結果
| 問題 | No.2298 yukicounter |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2025-12-28 17:27:23 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 17 ms / 2,000 ms |
| コード長 | 21,465 bytes |
| 記録 | |
| コンパイル時間 | 2,460 ms |
| コンパイル使用メモリ | 224,240 KB |
| 実行使用メモリ | 11,568 KB |
| 最終ジャッジ日時 | 2025-12-28 17:27:27 |
| 合計ジャッジ時間 | 4,346 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 30 |
ソースコード
#include <algorithm>
#include <bit>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <cstdint>
#include <functional>
#include <iostream>
#include <iterator>
#include <limits>
#include <map>
#include <numeric>
#include <queue> // credit atcoder
#include <ranges>
#include <set>
#include <sstream>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <iomanip>
#include <random>
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
explicit barrett(unsigned int m)
: _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) <
// 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type, std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t,
unsigned __int128>;
template <class T>
using is_integral =
typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_signed_int =
typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value, make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T>
using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type, std::false_type>::type;
template <class T>
using to_unsigned =
typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id>
struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
using mint = modint998244353;
/*
g++ -std=c++23 -O2 -Wall -Wextra A.cpp -o A
./A < input.in > output.out
*/
template <int Sigma = 26>
struct Trie {
struct Node {
char c;
std::array<int, Sigma> nxt;
std::vector<int> tails;
explicit Node(const char c) : c(c) {
std::fill(nxt.begin(), nxt.end(), -1);
}
};
const std::function<int(const char)> convert;
std::vector<Node> nodes;
explicit Trie(const std::function<int(const char)> convert =
[](const char c) -> int { return c - 'a'; })
: convert(convert) {
nodes.emplace_back('$');
}
void add(const std::string& s, const int id = -1, int pos = 0) {
for (const char c : s) {
const int c_int = convert(c);
if (nodes[pos].nxt[c_int] == -1) {
const int nxt_pos = nodes.size();
nodes[pos].nxt[c_int] = nxt_pos;
nodes.emplace_back(c);
pos = nxt_pos;
} else {
pos = nodes[pos].nxt[c_int];
}
}
nodes[pos].tails.emplace_back(id);
}
int find(const std::string& t, int pos = 0) const {
for (const char c : t) {
const int c_int = convert(c);
if (nodes[pos].nxt[c_int] == -1) return -1;
pos = nodes[pos].nxt[c_int];
}
return pos;
}
};
template <int Sigma = 26, bool IS_FULL_VER = false>
struct AhoCorasick : Trie<Sigma + 1> {
using Trie<Sigma + 1>::Trie;
std::vector<int> nums;
std::vector<int> out_link; // 指向“最近的一个 tails 非空的祖先”(含自己)
void build() {
auto& vertices = this->nodes;
const int n = vertices.size();
nums.assign(n, 0);
out_link.assign(n, 0);
for (int i = 0; i < n; ++i) {
nums[i] = (int)vertices[i].tails.size();
}
// 关键:根的 fail 置 0(用 nxt[Sigma] 存)
vertices[0].nxt[Sigma] = 0;
std::queue<int> que;
for (int i = 0; i < Sigma; ++i) {
if (vertices[0].nxt[i] == -1) {
vertices[0].nxt[i] = 0;
} else {
int v = vertices[0].nxt[i];
vertices[v].nxt[Sigma] = 0;
que.emplace(v);
}
}
// root 的 out_link:如果 root 有 tails(一般没有)则指自己,否则 0
out_link[0] = vertices[0].tails.empty() ? 0 : 0;
while (!que.empty()) {
int u = que.front();
que.pop();
int f = vertices[u].nxt[Sigma];
// nums 继承(如果你还要 match 总次数用得到;distinct 不依赖它)
nums[u] += nums[f];
// out_link:若自己有输出,则指自己;否则指 fail 的 out_link
out_link[u] = vertices[u].tails.empty() ? out_link[f] : u;
for (int c = 0; c < Sigma; ++c) {
int v = vertices[u].nxt[c];
if (v == -1) continue;
int on_failure = f;
while (vertices[on_failure].nxt[c] == -1) {
on_failure = vertices[on_failure].nxt[Sigma];
}
vertices[v].nxt[Sigma] = vertices[on_failure].nxt[c];
que.emplace(v);
}
}
}
int move(char c, int pos) const {
const int c_int = this->convert(c);
while (this->nodes[pos].nxt[c_int] == -1) pos = this->nodes[pos].nxt[Sigma];
return this->nodes[pos].nxt[c_int];
}
int match_distinct(const std::string& t, int m_patterns, int pos = 0) const {
static std::vector<int> vis;
static int stamp = 1;
if ((int)vis.size() < m_patterns) vis.assign(m_patterns, 0);
++stamp;
int ans = 0;
for (char c : t) {
pos = move(c, pos);
int u = out_link[pos];
while (u != 0) {
for (int id : this->nodes[u].tails) {
if (id >= 0 && id < m_patterns && vis[id] != stamp) {
vis[id] = stamp;
++ans;
}
}
int f = this->nodes[u].nxt[Sigma];
u = out_link[f];
}
}
return ans;
}
int match(const std::string& t, int pos = 0) const {
int total = 0;
for (const char c : t) {
pos = move(c, pos);
total += nums[pos];
}
return total;
}
std::map<int, int> match_fully(const std::string& t, int pos = 0) const {
static_assert(IS_FULL_VER);
std::map<int, int> mp;
for (const char c : t) {
pos = move(c, pos);
for (const int id : this->nodes[pos].tails) ++mp[id];
}
return mp;
}
};
struct RollingHash {
static const uint64_t mod = (1ull << 61ull) - 1;
using uint128_t = __uint128_t;
std::vector<uint64_t> power;
const uint64_t base;
static inline uint64_t add(uint64_t a, uint64_t b) {
if ((a += b) >= mod) a -= mod;
return a;
}
static inline uint64_t mul(uint64_t a, uint64_t b) {
uint128_t c = (uint128_t)a * b;
return add(c >> 61, c & mod);
}
static inline uint64_t generate_base() {
std::mt19937_64 mt(
std::chrono::steady_clock::now().time_since_epoch().count());
std::uniform_int_distribution<uint64_t> rand(1, RollingHash::mod - 1);
return rand(mt);
}
inline void expand(size_t sz) {
if (power.size() < sz + 1) {
int pre_sz = (int)power.size();
power.resize(sz + 1);
for (int i = pre_sz - 1; i < sz; i++) {
power[i + 1] = mul(power[i], base);
}
}
}
explicit RollingHash(uint64_t base = generate_base())
: base(base), power{1} {}
std::vector<uint64_t> build(const std::string& s) const {
int sz = s.size();
std::vector<uint64_t> hashed(sz + 1);
for (int i = 0; i < sz; i++) {
hashed[i + 1] = add(mul(hashed[i], base), s[i]);
}
return hashed;
}
template <typename T>
std::vector<uint64_t> build(const std::vector<T>& s) const {
int sz = s.size();
std::vector<uint64_t> hashed(sz + 1);
for (int i = 0; i < sz; i++) {
hashed[i + 1] = add(mul(hashed[i], base), s[i]);
}
return hashed;
}
// [l, r)
uint64_t query(const std::vector<uint64_t>& s, int l, int r) {
expand(r - l);
return add(s[r], mod - mul(s[l], power[r - l]));
}
uint64_t combine(uint64_t h1, uint64_t h2, size_t h2len) {
expand(h2len);
return add(mul(h1, power[h2len]), h2);
}
int lcp(const std::vector<uint64_t>& a, int l1, int r1,
const std::vector<uint64_t>& b, int l2, int r2) {
int len = std::min(r1 - l1, r2 - l2);
int low = 0, high = len + 1;
while (high - low > 1) {
int mid = (low + high) / 2;
if (query(a, l1, l1 + mid) == query(b, l2, l2 + mid))
low = mid;
else
high = mid;
}
return low;
}
};
int main() {
std::ios_base::sync_with_stdio(false);
std::cin.tie(nullptr);
std::string s;
std::cin >> s;
int n = s.size();
RollingHash rh;
std::string yc = "yukicoder";
auto a = rh.build(s);
auto b = rh.build(yc);
int m = yc.size();
int ans = 0;
int cur = 0;
for (int i = 0; i + m - 1 < n; i++) {
if (rh.query(a, i, i + m) == rh.query(b, 0, m)) {
cur += 1;
i += m - 1;
ans = std::max(ans, cur);
} else {
cur = 0;
}
}
std::cout << ans << '\n';
return 0;
}