結果

問題 No.2298 yukicounter
コンテスト
ユーザー OnjoujiToki
提出日時 2025-12-28 17:27:23
言語 C++23
(gcc 13.3.0 + boost 1.89.0)
結果
AC  
実行時間 17 ms / 2,000 ms
コード長 21,465 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 2,460 ms
コンパイル使用メモリ 224,240 KB
実行使用メモリ 11,568 KB
最終ジャッジ日時 2025-12-28 17:27:27
合計ジャッジ時間 4,346 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#include <algorithm>
#include <bit>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <cstdint>
#include <functional>
#include <iostream>
#include <iterator>
#include <limits>
#include <map>
#include <numeric>
#include <queue>  // credit atcoder
#include <ranges>
#include <set>
#include <sstream>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <iomanip>
#include <random>

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
  x %= m;
  if (x < 0) x += m;
  return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
  unsigned int _m;
  unsigned long long im;

  // @param m `1 <= m < 2^31`
  explicit barrett(unsigned int m)
      : _m(m), im((unsigned long long)(-1) / m + 1) {}

  // @return m
  unsigned int umod() const { return _m; }

  // @param a `0 <= a < m`
  // @param b `0 <= b < m`
  // @return `a * b % m`
  unsigned int mul(unsigned int a, unsigned int b) const {
    // [1] m = 1
    // a = b = im = 0, so okay

    // [2] m >= 2
    // im = ceil(2^64 / m)
    // -> im * m = 2^64 + r (0 <= r < m)
    // let z = a*b = c*m + d (0 <= c, d < m)
    // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
    // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) <
    // 2^64 * 2
    // ((ab * im) >> 64) == c or c + 1
    unsigned long long z = a;
    z *= b;
#ifdef _MSC_VER
    unsigned long long x;
    _umul128(z, im, &x);
#else
    unsigned long long x =
        (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
    unsigned int v = (unsigned int)(z - x * _m);
    if (_m <= v) v += _m;
    return v;
  }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
  if (m == 1) return 0;
  unsigned int _m = (unsigned int)(m);
  unsigned long long r = 1;
  unsigned long long y = safe_mod(x, m);
  while (n) {
    if (n & 1) r = (r * y) % _m;
    y = (y * y) % _m;
    n >>= 1;
  }
  return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
  if (n <= 1) return false;
  if (n == 2 || n == 7 || n == 61) return true;
  if (n % 2 == 0) return false;
  long long d = n - 1;
  while (d % 2 == 0) d /= 2;
  constexpr long long bases[3] = {2, 7, 61};
  for (long long a : bases) {
    long long t = d;
    long long y = pow_mod_constexpr(a, t, n);
    while (t != n - 1 && y != 1 && y != n - 1) {
      y = y * y % n;
      t <<= 1;
    }
    if (y != n - 1 && t % 2 == 0) {
      return false;
    }
  }
  return true;
}
template <int n>
constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
  a = safe_mod(a, b);
  if (a == 0) return {b, 0};

  // Contracts:
  // [1] s - m0 * a = 0 (mod b)
  // [2] t - m1 * a = 0 (mod b)
  // [3] s * |m1| + t * |m0| <= b
  long long s = b, t = a;
  long long m0 = 0, m1 = 1;

  while (t) {
    long long u = s / t;
    s -= t * u;
    m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

    // [3]:
    // (s - t * u) * |m1| + t * |m0 - m1 * u|
    // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
    // = s * |m1| + t * |m0| <= b

    auto tmp = s;
    s = t;
    t = tmp;
    tmp = m0;
    m0 = m1;
    m1 = tmp;
  }
  // by [3]: |m0| <= b/g
  // by g != b: |m0| < b/g
  if (m0 < 0) m0 += b / s;
  return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
  if (m == 2) return 1;
  if (m == 167772161) return 3;
  if (m == 469762049) return 3;
  if (m == 754974721) return 11;
  if (m == 998244353) return 3;
  int divs[20] = {};
  divs[0] = 2;
  int cnt = 1;
  int x = (m - 1) / 2;
  while (x % 2 == 0) x /= 2;
  for (int i = 3; (long long)(i)*i <= x; i += 2) {
    if (x % i == 0) {
      divs[cnt++] = i;
      while (x % i == 0) {
        x /= i;
      }
    }
  }
  if (x > 1) {
    divs[cnt++] = x;
  }
  for (int g = 2;; g++) {
    bool ok = true;
    for (int i = 0; i < cnt; i++) {
      if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
        ok = false;
        break;
      }
    }
    if (ok) return g;
  }
}
template <int m>
constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
  unsigned long long ans = 0;
  while (true) {
    if (a >= m) {
      ans += n * (n - 1) / 2 * (a / m);
      a %= m;
    }
    if (b >= m) {
      ans += n * (b / m);
      b %= m;
    }

    unsigned long long y_max = a * n + b;
    if (y_max < m) break;
    // y_max < m * (n + 1)
    // floor(y_max / m) <= n
    n = (unsigned long long)(y_max / m);
    b = (unsigned long long)(y_max % m);
    std::swap(m, a);
  }
  return ans;
}

}  // namespace internal

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral =
    typename std::conditional<std::is_integral<T>::value ||
                                  is_signed_int128<T>::value ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_signed_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_signed<T>::value) ||
                                  is_signed_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value, make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T>
using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type, std::false_type>::type;

template <class T>
using to_unsigned =
    typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>,
                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T>
using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T>
using is_modint = std::is_base_of<modint_base, T>;
template <class T>
using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
  using mint = static_modint;

 public:
  static constexpr int mod() { return m; }
  static mint raw(int v) {
    mint x;
    x._v = v;
    return x;
  }

  static_modint() : _v(0) {}
  template <class T, internal::is_signed_int_t<T>* = nullptr>
  static_modint(T v) {
    long long x = (long long)(v % (long long)(umod()));
    if (x < 0) x += umod();
    _v = (unsigned int)(x);
  }
  template <class T, internal::is_unsigned_int_t<T>* = nullptr>
  static_modint(T v) {
    _v = (unsigned int)(v % umod());
  }

  unsigned int val() const { return _v; }

  mint& operator++() {
    _v++;
    if (_v == umod()) _v = 0;
    return *this;
  }
  mint& operator--() {
    if (_v == 0) _v = umod();
    _v--;
    return *this;
  }
  mint operator++(int) {
    mint result = *this;
    ++*this;
    return result;
  }
  mint operator--(int) {
    mint result = *this;
    --*this;
    return result;
  }

  mint& operator+=(const mint& rhs) {
    _v += rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint& operator-=(const mint& rhs) {
    _v -= rhs._v;
    if (_v >= umod()) _v += umod();
    return *this;
  }
  mint& operator*=(const mint& rhs) {
    unsigned long long z = _v;
    z *= rhs._v;
    _v = (unsigned int)(z % umod());
    return *this;
  }
  mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

  mint operator+() const { return *this; }
  mint operator-() const { return mint() - *this; }

  mint pow(long long n) const {
    assert(0 <= n);
    mint x = *this, r = 1;
    while (n) {
      if (n & 1) r *= x;
      x *= x;
      n >>= 1;
    }
    return r;
  }
  mint inv() const {
    if (prime) {
      assert(_v);
      return pow(umod() - 2);
    } else {
      auto eg = internal::inv_gcd(_v, m);
      assert(eg.first == 1);
      return eg.second;
    }
  }

  friend mint operator+(const mint& lhs, const mint& rhs) {
    return mint(lhs) += rhs;
  }
  friend mint operator-(const mint& lhs, const mint& rhs) {
    return mint(lhs) -= rhs;
  }
  friend mint operator*(const mint& lhs, const mint& rhs) {
    return mint(lhs) *= rhs;
  }
  friend mint operator/(const mint& lhs, const mint& rhs) {
    return mint(lhs) /= rhs;
  }
  friend bool operator==(const mint& lhs, const mint& rhs) {
    return lhs._v == rhs._v;
  }
  friend bool operator!=(const mint& lhs, const mint& rhs) {
    return lhs._v != rhs._v;
  }

 private:
  unsigned int _v;
  static constexpr unsigned int umod() { return m; }
  static constexpr bool prime = internal::is_prime<m>;
};

template <int id>
struct dynamic_modint : internal::modint_base {
  using mint = dynamic_modint;

 public:
  static int mod() { return (int)(bt.umod()); }
  static void set_mod(int m) {
    assert(1 <= m);
    bt = internal::barrett(m);
  }
  static mint raw(int v) {
    mint x;
    x._v = v;
    return x;
  }

  dynamic_modint() : _v(0) {}
  template <class T, internal::is_signed_int_t<T>* = nullptr>
  dynamic_modint(T v) {
    long long x = (long long)(v % (long long)(mod()));
    if (x < 0) x += mod();
    _v = (unsigned int)(x);
  }
  template <class T, internal::is_unsigned_int_t<T>* = nullptr>
  dynamic_modint(T v) {
    _v = (unsigned int)(v % mod());
  }

  unsigned int val() const { return _v; }

  mint& operator++() {
    _v++;
    if (_v == umod()) _v = 0;
    return *this;
  }
  mint& operator--() {
    if (_v == 0) _v = umod();
    _v--;
    return *this;
  }
  mint operator++(int) {
    mint result = *this;
    ++*this;
    return result;
  }
  mint operator--(int) {
    mint result = *this;
    --*this;
    return result;
  }

  mint& operator+=(const mint& rhs) {
    _v += rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint& operator-=(const mint& rhs) {
    _v += mod() - rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint& operator*=(const mint& rhs) {
    _v = bt.mul(_v, rhs._v);
    return *this;
  }
  mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

  mint operator+() const { return *this; }
  mint operator-() const { return mint() - *this; }

  mint pow(long long n) const {
    assert(0 <= n);
    mint x = *this, r = 1;
    while (n) {
      if (n & 1) r *= x;
      x *= x;
      n >>= 1;
    }
    return r;
  }
  mint inv() const {
    auto eg = internal::inv_gcd(_v, mod());
    assert(eg.first == 1);
    return eg.second;
  }

  friend mint operator+(const mint& lhs, const mint& rhs) {
    return mint(lhs) += rhs;
  }
  friend mint operator-(const mint& lhs, const mint& rhs) {
    return mint(lhs) -= rhs;
  }
  friend mint operator*(const mint& lhs, const mint& rhs) {
    return mint(lhs) *= rhs;
  }
  friend mint operator/(const mint& lhs, const mint& rhs) {
    return mint(lhs) /= rhs;
  }
  friend bool operator==(const mint& lhs, const mint& rhs) {
    return lhs._v == rhs._v;
  }
  friend bool operator!=(const mint& lhs, const mint& rhs) {
    return lhs._v != rhs._v;
  }

 private:
  unsigned int _v;
  static internal::barrett bt;
  static unsigned int umod() { return bt.umod(); }
};
template <int id>
internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class>
struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal
using mint = modint998244353;
/*
g++ -std=c++23 -O2 -Wall -Wextra A.cpp -o A
./A < input.in > output.out

*/

template <int Sigma = 26>
struct Trie {
  struct Node {
    char c;
    std::array<int, Sigma> nxt;
    std::vector<int> tails;

    explicit Node(const char c) : c(c) {
      std::fill(nxt.begin(), nxt.end(), -1);
    }
  };

  const std::function<int(const char)> convert;
  std::vector<Node> nodes;

  explicit Trie(const std::function<int(const char)> convert =
                    [](const char c) -> int { return c - 'a'; })
      : convert(convert) {
    nodes.emplace_back('$');
  }

  void add(const std::string& s, const int id = -1, int pos = 0) {
    for (const char c : s) {
      const int c_int = convert(c);
      if (nodes[pos].nxt[c_int] == -1) {
        const int nxt_pos = nodes.size();
        nodes[pos].nxt[c_int] = nxt_pos;
        nodes.emplace_back(c);
        pos = nxt_pos;
      } else {
        pos = nodes[pos].nxt[c_int];
      }
    }
    nodes[pos].tails.emplace_back(id);
  }

  int find(const std::string& t, int pos = 0) const {
    for (const char c : t) {
      const int c_int = convert(c);
      if (nodes[pos].nxt[c_int] == -1) return -1;
      pos = nodes[pos].nxt[c_int];
    }
    return pos;
  }
};

template <int Sigma = 26, bool IS_FULL_VER = false>
struct AhoCorasick : Trie<Sigma + 1> {
  using Trie<Sigma + 1>::Trie;

  std::vector<int> nums;
  std::vector<int> out_link;  // 指向“最近的一个 tails 非空的祖先”(含自己)

  void build() {
    auto& vertices = this->nodes;
    const int n = vertices.size();
    nums.assign(n, 0);
    out_link.assign(n, 0);

    for (int i = 0; i < n; ++i) {
      nums[i] = (int)vertices[i].tails.size();
    }

    // 关键:根的 fail 置 0(用 nxt[Sigma] 存)
    vertices[0].nxt[Sigma] = 0;

    std::queue<int> que;
    for (int i = 0; i < Sigma; ++i) {
      if (vertices[0].nxt[i] == -1) {
        vertices[0].nxt[i] = 0;
      } else {
        int v = vertices[0].nxt[i];
        vertices[v].nxt[Sigma] = 0;
        que.emplace(v);
      }
    }

    // root 的 out_link:如果 root 有 tails(一般没有)则指自己,否则 0
    out_link[0] = vertices[0].tails.empty() ? 0 : 0;

    while (!que.empty()) {
      int u = que.front();
      que.pop();
      int f = vertices[u].nxt[Sigma];

      // nums 继承(如果你还要 match 总次数用得到;distinct 不依赖它)
      nums[u] += nums[f];

      // out_link:若自己有输出,则指自己;否则指 fail 的 out_link
      out_link[u] = vertices[u].tails.empty() ? out_link[f] : u;

      for (int c = 0; c < Sigma; ++c) {
        int v = vertices[u].nxt[c];
        if (v == -1) continue;

        int on_failure = f;
        while (vertices[on_failure].nxt[c] == -1) {
          on_failure = vertices[on_failure].nxt[Sigma];
        }
        vertices[v].nxt[Sigma] = vertices[on_failure].nxt[c];
        que.emplace(v);
      }
    }
  }

  int move(char c, int pos) const {
    const int c_int = this->convert(c);
    while (this->nodes[pos].nxt[c_int] == -1) pos = this->nodes[pos].nxt[Sigma];
    return this->nodes[pos].nxt[c_int];
  }

  int match_distinct(const std::string& t, int m_patterns, int pos = 0) const {
    static std::vector<int> vis;
    static int stamp = 1;
    if ((int)vis.size() < m_patterns) vis.assign(m_patterns, 0);
    ++stamp;

    int ans = 0;
    for (char c : t) {
      pos = move(c, pos);

      int u = out_link[pos];
      while (u != 0) {
        for (int id : this->nodes[u].tails) {
          if (id >= 0 && id < m_patterns && vis[id] != stamp) {
            vis[id] = stamp;
            ++ans;
          }
        }
        int f = this->nodes[u].nxt[Sigma];
        u = out_link[f];
      }
    }
    return ans;
  }
  int match(const std::string& t, int pos = 0) const {
    int total = 0;
    for (const char c : t) {
      pos = move(c, pos);
      total += nums[pos];
    }
    return total;
  }

  std::map<int, int> match_fully(const std::string& t, int pos = 0) const {
    static_assert(IS_FULL_VER);
    std::map<int, int> mp;
    for (const char c : t) {
      pos = move(c, pos);
      for (const int id : this->nodes[pos].tails) ++mp[id];
    }
    return mp;
  }
};

struct RollingHash {
  static const uint64_t mod = (1ull << 61ull) - 1;
  using uint128_t = __uint128_t;
  std::vector<uint64_t> power;
  const uint64_t base;

  static inline uint64_t add(uint64_t a, uint64_t b) {
    if ((a += b) >= mod) a -= mod;
    return a;
  }

  static inline uint64_t mul(uint64_t a, uint64_t b) {
    uint128_t c = (uint128_t)a * b;
    return add(c >> 61, c & mod);
  }

  static inline uint64_t generate_base() {
    std::mt19937_64 mt(
        std::chrono::steady_clock::now().time_since_epoch().count());
    std::uniform_int_distribution<uint64_t> rand(1, RollingHash::mod - 1);
    return rand(mt);
  }

  inline void expand(size_t sz) {
    if (power.size() < sz + 1) {
      int pre_sz = (int)power.size();
      power.resize(sz + 1);
      for (int i = pre_sz - 1; i < sz; i++) {
        power[i + 1] = mul(power[i], base);
      }
    }
  }

  explicit RollingHash(uint64_t base = generate_base())
      : base(base), power{1} {}

  std::vector<uint64_t> build(const std::string& s) const {
    int sz = s.size();
    std::vector<uint64_t> hashed(sz + 1);
    for (int i = 0; i < sz; i++) {
      hashed[i + 1] = add(mul(hashed[i], base), s[i]);
    }
    return hashed;
  }

  template <typename T>
  std::vector<uint64_t> build(const std::vector<T>& s) const {
    int sz = s.size();
    std::vector<uint64_t> hashed(sz + 1);
    for (int i = 0; i < sz; i++) {
      hashed[i + 1] = add(mul(hashed[i], base), s[i]);
    }
    return hashed;
  }

  // [l, r)
  uint64_t query(const std::vector<uint64_t>& s, int l, int r) {
    expand(r - l);
    return add(s[r], mod - mul(s[l], power[r - l]));
  }

  uint64_t combine(uint64_t h1, uint64_t h2, size_t h2len) {
    expand(h2len);
    return add(mul(h1, power[h2len]), h2);
  }

  int lcp(const std::vector<uint64_t>& a, int l1, int r1,
          const std::vector<uint64_t>& b, int l2, int r2) {
    int len = std::min(r1 - l1, r2 - l2);
    int low = 0, high = len + 1;
    while (high - low > 1) {
      int mid = (low + high) / 2;
      if (query(a, l1, l1 + mid) == query(b, l2, l2 + mid))
        low = mid;
      else
        high = mid;
    }
    return low;
  }
};

int main() {
  std::ios_base::sync_with_stdio(false);
  std::cin.tie(nullptr);
  std::string s;
  std::cin >> s;
  int n = s.size();
  RollingHash rh;
  std::string yc = "yukicoder";
  auto a = rh.build(s);
  auto b = rh.build(yc);
  int m = yc.size();
  int ans = 0;
  int cur = 0;
  for (int i = 0; i + m - 1 < n; i++) {
    if (rh.query(a, i, i + m) == rh.query(b, 0, m)) {
      cur += 1;
      i += m - 1;
      ans = std::max(ans, cur);
    } else {
      cur = 0;
    }
  }
  std::cout << ans << '\n';

  return 0;
}
0