結果

問題 No.3423 Minimum Xor Query
コンテスト
ユーザー kidodesu
提出日時 2025-12-28 19:33:26
言語 PyPy3
(7.3.17)
結果
TLE  
実行時間 -
コード長 5,842 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 151 ms
コンパイル使用メモリ 82,268 KB
実行使用メモリ 123,496 KB
最終ジャッジ日時 2026-01-11 13:04:13
合計ジャッジ時間 12,693 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other TLE * 1 -- * 17
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py
import math
from bisect import bisect_left, bisect_right

class SortedMultiset:
    BUCKET_RATIO = 16
    SPLIT_RATIO = 24
    
    def __init__(self, a = []):
        "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
        a = list(a)
        n = self.size = len(a)
        if any(a[i] > a[i + 1] for i in range(n - 1)):
            a.sort()
        num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
        self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)]

    def __iter__(self):
        for i in self.a:
            for j in i: yield j

    def __reversed__(self):
        for i in reversed(self.a):
            for j in reversed(i): yield j
    
    def __eq__(self, other) -> bool:
        return list(self) == list(other)
    
    def __len__(self) -> int:
        return self.size
    
    def __repr__(self) -> str:
        return "SortedMultiset" + str(self.a)
    
    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1 : len(s) - 1] + "}"

    def _position(self, x):
        "return the bucket, index of the bucket and position in which x should be. self must not be empty."
        for i, a in enumerate(self.a):
            if x <= a[-1]: break
        return (a, i, bisect_left(a, x))

    def __contains__(self, x) -> bool:
        if self.size == 0: return False
        a, _, i = self._position(x)
        return i != len(a) and a[i] == x

    def count(self, x) -> int:
        "Count the number of x."
        return self.index_right(x) - self.index(x)

    def add(self, x) -> None:
        "Add an element. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return
        a, b, i = self._position(x)
        a.insert(i, x)
        self.size += 1
        if len(a) > len(self.a) * self.SPLIT_RATIO:
            mid = len(a) >> 1
            self.a[b:b+1] = [a[:mid], a[mid:]]
    
    def _pop(self, a, b: int, i: int):
        ans = a.pop(i)
        self.size -= 1
        if not a: del self.a[b]
        return ans

    def discard(self, x) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0: return False
        a, b, i = self._position(x)
        if i == len(a) or a[i] != x: return False
        self._pop(a, b, i)
        return True

    def lt(self, x):
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x):
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x):
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x):
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]
    
    def __getitem__(self, i: int):
        "Return the i-th element."
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0: return a[i]
        else:
            for a in self.a:
                if i < len(a): return a[i]
                i -= len(a)
        raise IndexError
    
    def pop(self, i: int = -1):
        "Pop and return the i-th element."
        if i < 0:
            for b, a in enumerate(reversed(self.a)):
                i += len(a)
                if i >= 0: return self._pop(a, ~b, i)
        else:
            for b, a in enumerate(self.a):
                if i < len(a): return self._pop(a, b, i)
                i -= len(a)
        raise IndexError

    def index(self, x) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans

n, q = map(int, input().split())
P = 1 << 22
A = list(map(int, input().split()))
A = [A[i]+P for i in range(n)]
inf = 1 << 30
N = 300
K = SortedMultiset([])
S = [SortedMultiset(A[:min(i*N, n)] + [0, inf]) for i in range((n + N - 1) // N + 1)]
t = len(S)
M = [SortedMultiset([]) for _ in range(t)]
T = []
for i in range(t):
    for j in range(len(S[i])-1):
        M[i].add(S[i][j+1]^S[i][j])

for _ in range(q):
    K = list(map(int, input().split()))
    if K[0] == 1:
        i, x = K[1:]
        x += P
        i -= 1
        l = i // N + 1
        px = A[i]
        for s in range(l, t):
            idx = S[s].index(px)
            M[s].discard(S[s][idx] ^ S[s][idx-1])
            M[s].discard(S[s][idx+1] ^ S[s][idx])
            S[s].discard(S[s][idx])
            M[s].add(S[s][idx] ^ S[s][idx-1])
            S[s].add(x)
            idx = S[s].index(x)
            M[s].discard(S[s][idx+1] ^ S[s][idx-1])
            M[s].add(S[s][idx] ^ S[s][idx-1])
            M[s].add(S[s][idx+1] ^ S[s][idx])
        A[i] = x
    else:
        r = K[1]
        lt = r // N
        l = N * lt
        B = A[l: r][:]
        B.sort()
        ans = M[lt][0]
        for i in range(len(B)-1):
            ans = min(ans, B[i+1]^B[i])
        for i in range(len(B)):
            idx = S[lt].index(B[i])
            ans = min(ans, S[lt][idx]^B[i])
            ans = min(ans, B[i]^S[lt][idx-1])
        print(ans)
0