結果
問題 | No.147 試験監督(2) |
ユーザー | anta |
提出日時 | 2015-02-08 23:32:15 |
言語 | C++11 (gcc 11.4.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,380 bytes |
コンパイル時間 | 747 ms |
コンパイル使用メモリ | 82,840 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-23 07:22:52 |
合計ジャッジ時間 | 2,077 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:145:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 145 | scanf("%d", &N); | ~~~~~^~~~~~~~~~ main.cpp:150:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 150 | scanf("%lld%s", &C, D); | ~~~~~^~~~~~~~~~~~~~~~~
ソースコード
#include <string> #include <vector> #include <algorithm> #include <numeric> #include <set> #include <map> #include <queue> #include <iostream> #include <sstream> #include <cstdio> #include <cmath> #include <ctime> #include <cstring> #include <cctype> #include <cassert> #include <limits> #include <functional> #define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i)) #define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i)) #define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i)) #if defined(_MSC_VER) || __cplusplus > 199711L #define aut(r,v) auto r = (v) #else #define aut(r,v) __typeof(v) r = (v) #endif #define each(it,o) for(aut(it, (o).begin()); it != (o).end(); ++ it) #define all(o) (o).begin(), (o).end() #define pb(x) push_back(x) #define mp(x,y) make_pair((x),(y)) #define mset(m,v) memset(m,v,sizeof(m)) #define INF 0x3f3f3f3f #define INFL 0x3f3f3f3f3f3f3f3fLL using namespace std; typedef vector<int> vi; typedef pair<int,int> pii; typedef vector<pair<int,int> > vpii; typedef long long ll; template<typename T, typename U> inline void amin(T &x, U y) { if(y < x) x = y; } template<typename T, typename U> inline void amax(T &x, U y) { if(x < y) x = y; } template<int MOD> struct ModInt { static const int Mod = MOD; unsigned x; ModInt(): x(0) { } ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { signed a = x, b = MOD, u = 1, v = 0; while(b) { signed t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } if(u < 0) u += Mod; ModInt res; res.x = (unsigned)u; return res; } }; template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) { ModInt<MOD> r = 1; while(k) { if(k & 1) r *= a; a *= a; k >>= 1; } return r; } typedef ModInt<1000000007> mint; typedef ModInt<1000000006> phimint; int digitsMod(char s[], int n, int m) { int x = 0, pow10 = 1; for(int i = n-1; i >= 0; i --) { if((x += pow10 * (s[i] - '0') % m) >= m) x -= m; pow10 = pow10 * 10 % m; } return x; } struct Matrix { typedef mint Num; static const int MaxN = 2; int hei, wid; Num v[MaxN][MaxN]; Matrix() {} Matrix(int n, int m): hei(n), wid(m) { mset(v, 0); } inline int height() const { return hei; } inline int width() const { return wid; } inline Num& at(int i, int j) { return v[i][j]; } inline const Num& at(int i, int j) const { return v[i][j]; } static Matrix identity(int n) { Matrix A(n, n); rep(i, n) A.at(i, i) = 1; return A; } inline static Matrix identity(const Matrix& A) { return identity(A.height()); } Matrix& operator*=(const Matrix& B) { int n = height(), m = B.width(), p = B.height(); assert(p == width()); const unsigned (*b)[MaxN] = reinterpret_cast<const unsigned (*)[MaxN]>(B.v); Num w[MaxN][MaxN]; rep(i, n) { const unsigned *ai = reinterpret_cast<const unsigned*>(v[i]); rep(j, m) { unsigned long long x = 0; rep(k, p) x += (unsigned long long)ai[k] * b[k][j]; w[i][j].x = x % mint::Mod; } } memcpy(v, w, sizeof(v)); return *this; } }; Matrix operator^(const Matrix& t, ll k) { Matrix A = t, B = Matrix::identity(t); while(k) { if(k & 1) B *= A; A *= A; k >>= 1; } return B; } mint fib(long long n) { Matrix A(2, 2); A.at(0, 0) = A.at(1, 0) = A.at(0, 1) = 1; A = A ^ n; return A.at(0, 1); } int main() { int N; scanf("%d", &N); char *D = new char[202]; mint ans = 1; rep(i, N) { long long C; scanf("%lld%s", &C, D); mint f = fib(C+2); int d = digitsMod(D, strlen(D), phimint::Mod); mint t = f ^ d; ans *= t; //0,1,2,3,4, //1,2,3,5,8 } printf("%d\n", ans.get()); return 0; }