結果

問題 No.3424 Shooting Game
コンテスト
ユーザー るるまるふぁんくらぶ
提出日時 2026-01-11 14:07:41
言語 PyPy3
(7.3.17)
結果
AC  
実行時間 1,220 ms / 2,000 ms
コード長 5,297 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 210 ms
コンパイル使用メモリ 82,612 KB
実行使用メモリ 90,092 KB
最終ジャッジ日時 2026-01-11 17:22:15
合計ジャッジ時間 10,879 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 11
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

class lazy_segtree:
    def update(self, k):
        self.d[k] = self.op(self.d[2 * k], self.d[2 * k + 1])

    def all_apply(self, k, f):
        self.d[k] = self.mapping(f, self.d[k])
        if k < self.size:
            self.lz[k] = self.composition(f, self.lz[k])

    def push(self, k):
        self.all_apply(2 * k, self.lz[k])
        self.all_apply(2 * k + 1, self.lz[k])
        self.lz[k] = self.identity

    def __init__(self, V, OP, E, MAPPING, COMPOSITION, ID):
        self.n = len(V)
        self.log = (self.n - 1).bit_length()
        self.size = 1 << self.log
        self.d = [E for i in range(2 * self.size)]
        self.lz = [ID for i in range(self.size)]
        self.e = E
        self.op = OP
        self.mapping = MAPPING
        self.composition = COMPOSITION
        self.identity = ID
        for i in range(self.n):
            self.d[self.size + i] = V[i]
        for i in range(self.size - 1, 0, -1):
            self.update(i)

    def set(self, p, x):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.d[p] = x
        for i in range(1, self.log + 1):
            self.update(p >> i)

    def get(self, p):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        return self.d[p]

    def prod(self, l, r):
        assert 0 <= l and l <= r and r <= self.n
        if l == r:
            return self.e
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if ((l >> i) << i) != l:
                self.push(l >> i)
            if ((r >> i) << i) != r:
                self.push(r >> i)
        sml, smr = self.e, self.e
        while l < r:
            if l & 1:
                sml = self.op(sml, self.d[l])
                l += 1
            if r & 1:
                r -= 1
                smr = self.op(self.d[r], smr)
            l >>= 1
            r >>= 1
        return self.op(sml, smr)

    def all_prod(self):
        return self.d[1]

    def apply_point(self, p, f):
        assert 0 <= p and p < self.n
        p += self.size
        for i in range(self.log, 0, -1):
            self.push(p >> i)
        self.d[p] = self.mapping(f, self.d[p])
        for i in range(1, self.log + 1):
            self.update(p >> i)

    def apply(self, l, r, f):
        assert 0 <= l and l <= r and r <= self.n
        if l == r:
            return
        l += self.size
        r += self.size
        for i in range(self.log, 0, -1):
            if ((l >> i) << i) != l:
                self.push(l >> i)
            if ((r >> i) << i) != r:
                self.push((r - 1) >> i)
        l2, r2 = l, r
        while l < r:
            if l & 1:
                self.all_apply(l, f)
                l += 1
            if r & 1:
                r -= 1
                self.all_apply(r, f)
            l >>= 1
            r >>= 1
        l, r = l2, r2
        for i in range(1, self.log + 1):
            if ((l >> i) << i) != l:
                self.update(l >> i)
            if ((r >> i) << i) != r:
                self.update((r - 1) >> i)

    def max_right(self, l, g):
        assert 0 <= l and l <= self.n
        assert g(self.e)
        if l == self.n:
            return self.n
        l += self.size
        for i in range(self.log, 0, -1):
            self.push(l >> i)
        sm = self.e
        while 1:
            while l % 2 == 0:
                l >>= 1
            if not (g(self.op(sm, self.d[l]))):
                while l < self.size:
                    self.push(l)
                    l = 2 * l
                    if g(self.op(sm, self.d[l])):
                        sm = self.op(sm, self.d[l])
                        l += 1
                return l - self.size
            sm = self.op(sm, self.d[l])
            l += 1
            if (l & -l) == l:
                break
        return self.n

    def min_left(self, r, g):
        assert 0 <= r and r <= self.n
        assert g(self.e)
        if r == 0:
            return 0
        r += self.size
        for i in range(self.log, 0, -1):
            self.push((r - 1) >> i)
        sm = self.e
        while 1:
            r -= 1
            while r > 1 and (r % 2):
                r >>= 1
            if not (g(self.op(self.d[r], sm))):
                while r < self.size:
                    self.push(r)
                    r = 2 * r + 1
                    if g(self.op(self.d[r], sm)):
                        sm = self.op(self.d[r], sm)
                        r -= 1
                return r + 1 - self.size
            sm = self.op(self.d[r], sm)
            if (r & -r) == r:
                break
        return 0


LIMIT = 2 * 10**5 + 1
INF = 10**18

N, T = [int(s) for s in input().split()]
points = lazy_segtree([0] * LIMIT, max, 0, max, max, 0)

for _ in range(N):
    L, R, P = [int(s) for s in input().split()]
    points.apply(L, R + 1, P)

dp = [[-INF] * (LIMIT + 1) for _ in range(2)]
dp[0][0] = 0

for i in range(1, LIMIT + 1):
    dp[0][i] = dp[0][i - 1]
    if i >= T:
        dp[0][i] = max(dp[0][i], dp[1][i - T + 1])

    dp[1][i] = max(dp[1][i - 1], dp[0][i - 1] + points.get(i - 1))

print(max(dp[0][LIMIT], dp[1][LIMIT]))
0