結果

問題 No.3439 [Cherry 8th Tune] どの頂点にいた頃に戻りたいのか?
コンテスト
ユーザー 👑 p-adic
提出日時 2026-01-19 10:08:33
言語 C++17(gcc12)
(gcc 12.4.0 + boost 1.89.0)
結果
WA  
実行時間 -
コード長 63,187 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 6,537 ms
コンパイル使用メモリ 281,712 KB
実行使用メモリ 10,216 KB
最終ジャッジ日時 2026-01-23 21:07:09
合計ジャッジ時間 16,878 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample WA * 2
other WA * 37
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

// 入力制約/フォーマットチェック
#ifndef INCLUDE_MODE
  #define INCLUDE_MODE
  // #define REACTIVE
  #define USE_GETLINE
#endif
#ifdef INCLUDE_MAIN

void Solve()
{
  CEXPR( int , bound_N , 2e5 );
  CEXPR( int , bound_Q , 2e5 );
  GETLINE_COUNT_ASSERT( NQ_str , ' ' , 2 );
  STOI( NQ_str , N , 1 , bound_N );
  STOI( NQ_str , Q , 1 , bound_Q );
  GETLINE( S );
  assert( len( S ) == N );
  RUN( S , c ){
    assert( c == 'G' || c == 'B' );
  }
  CEXPR( int , bound_W , P - 1 );
  GETLINE_COUNT_ASSERT( W_str , ' ' , N + 1 );
  STOI_A( W_str , 0 , N + 1 , W , 0 , bound_W );
  assert( W[0] > 0 );
  ll sum_W = Sum<ll>( W );
  assert( sum_W <= bound_W );
  LazySqrtDecomposition lsd( AdditiveGroup<int>{} , AbstractModule{ 0 , [&](const int& r,int u){ return move( u += r ); } , MinSemilattice{ int( 1e9 ) } } , move( W ) );
  int K_sum = 0;
  REPEAT( Q ){
    GETLINE_COUNT( query_str , ' ' );
    STOI( query_str , type , 1 , 3 );
    if( type == 1 ){
      assert( query_str_count == 3 );
      STOI( query_str , l , 1 , N );
      STOI( query_str , r , l , N );
    } else if( type == 2 ){
      assert( query_str_count == 4 );
      STOI( query_str , l , 0 , N );
      STOI( query_str , r , l , N );
      STOI( query_str , a , -sum_W , sum_W );
      if( l <= 0 && 0 <= r ){
        W[0] += a;
        assert( W[0] > 0 );
      }
      sum_W += a * ( r - l + 1 );
      assert( sum_W <= bound_W );
      lsd.IntervalAct( l , r , a );
      assert( lsd.IntervalProduct( l , r ) >= 0 );
    } else {
      assert( query_str_count == 3 );
      STOI( query_str , v , 0 , N );
      STOI( query_str , K , 1 , N + 1 );
      K_sum += K;
      GETLINE_COUNT_ASSERT( u_str , ' ' , K );
      STOI_A( u_str , 0 , K , u , 0 , N );
      FOR( k , 1 , K ){
        assert( u[k-1] < u[k] );
      }
    }
  }
  CEXPR( int , bound_K_sum , 4e5 );
  assert( K_sum <= bound_K_sum );
  RETURN( "WA" );
}
REPEAT_MAIN(1);

#else // INCLUDE_MAIN
#ifdef INCLUDE_LIBRARY

// https://github.com/p-adic/cpp
// VVV ライブラリは以下に挿入する。

/* 圧縮用 */
#define TE template
#define TY typename
#define US using
#define ST static
#define AS assert
#define IN inline
#define CL class
#define PU public
#define OP operator
#define CE constexpr
#define CO const
#define NE noexcept
#define RE return 
#define WH while
#define VO void
#define VE vector
#define LI list
#define BE begin
#define EN end
#define SZ size
#define LE length
#define PW Power
#define MO move
#define TH this
#define CRI CO int&
#define CRUI CO uint&
#define CRL CO ll&
#define VI virtual 
#define IS basic_istream<char,Traits>
#define OS basic_ostream<char,Traits>
#define ST_AS static_assert
#define reMO_CO remove_const
#define is_COructible_v is_constructible_v
#define rBE rbegin
// CEXPRがCEに依存しているので削除しない。
// redefinitionを避けるため圧縮元はincludeしない。

// Module
// Graph
// が必要な場合はここに追加する。

CEXPR(uint,P,998244353);

#ifdef DEBUG
  #include "c:/Users/user/Documents/Programming/Mathematics/Algebra/Monoid/Group/Module/a_Body.hpp"
#else
#define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE
#define DC_OF_POINT(POINT)IN U& POINT()NE
#define DF_OF_CPOINT(POINT)TE <TY U> IN CO U& VirtualPointedSet<U>::POINT()CO NE{RE Point();}
#define DF_OF_POINT(POINT)TE <TY U> IN U& VirtualPointedSet<U>::POINT()NE{RE Point();}
TE <TY U>CL UnderlyingSet{PU:US type = U;};TE <TY U>CL VirtualPointedSet:VI PU UnderlyingSet<U>{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE <TY U>CL PointedSet:VI PU VirtualPointedSet<U>{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE <TY U>CL VirtualNSet:VI PU UnderlyingSet<U>{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE <TY U,TY F_U>CL AbstractNSet:VI PU VirtualNSet<U>{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN AbstractNSet<U,F_U>& OP=(CO AbstractNSet&)NE;IN U Transfer(CO U& u);};TE <TY U>CL VirtualMagma:VI PU UnderlyingSet<U>{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE <TY U = ll>CL AdditiveMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U = ll>CL MultiplicativeMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMagma:VI PU VirtualMagma<U>{PU:M_U m_m_U;IN AbstractMagma(M_U m_U);IN AbstractMagma<U,M_U>& OP=(CO AbstractMagma<U,M_U>&)NE;IN U Product(U u0,CO U& u1);};
TE <TY U> IN PointedSet<U>::PointedSet(U b_U):m_b_U(MO(b_U)){}TE <TY U> IN CO U& PointedSet<U>::Point()CO NE{RE m_b_U;}TE <TY U> IN U& PointedSet<U>::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE <TY U,TY F_U> IN AbstractNSet<U,F_U>::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v<U,F_U,U>);}TE <TY U,TY F_U> IN AbstractNSet<U,F_U>& AbstractNSet<U,F_U>::operator=(CO AbstractNSet<U,F_U>&)NE{RE *TH;}TE <TY U,TY F_U> IN U AbstractNSet<U,F_U>::Transfer(CO U& u){RE m_f_U(u);}TE <TY U> IN U VirtualNSet<U>::Inverse(CO U& u){RE Transfer(u);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v<U,M_U,U,U>);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>& AbstractMagma<U,M_U>::OP=(CO AbstractMagma<U,M_U>&)NE{RE *TH;}TE <TY U> IN U AdditiveMagma<U>::Product(U u0,CO U& u1){RE MO(u0 += u1);}TE <TY U> IN U MultiplicativeMagma<U>::Product(U u0,CO U& u1){RE MO(u0 *= u1);}TE <TY U,TY M_U> IN U AbstractMagma<U,M_U>::Product(U u0,CO U& u1){RE m_m_U(MO(u0),u1);}TE <TY U> IN U VirtualMagma<U>::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);}

TE <TY U>CL VirtualMonoid:VI PU VirtualMagma<U>,VI PU VirtualPointedSet<U>{};TE <TY U = ll>CL AdditiveMonoid:VI PU VirtualMonoid<U>,PU AdditiveMagma<U>,PU PointedSet<U>{};TE <TY U = ll>CL MultiplicativeMonoid:VI PU VirtualMonoid<U>,PU MultiplicativeMagma<U>,PU PointedSet<U>{PU:IN MultiplicativeMonoid(U e_U);};TE <TY U,TY M_U>CL AbstractMonoid:VI PU VirtualMonoid<U>,PU AbstractMagma<U,M_U>,PU PointedSet<U>{PU:IN AbstractMonoid(M_U m_U,U e_U);};
TE <TY U> IN MultiplicativeMonoid<U>::MultiplicativeMonoid(U e_U):PointedSet<U>(MO(e_U)){}TE <TY U,TY M_U> IN AbstractMonoid<U,M_U>::AbstractMonoid(M_U m_U,U e_U):AbstractMagma<U,M_U>(MO(m_U)),PointedSet<U>(MO(e_U)){}

TE <TY U>CL VirtualGroup:VI PU VirtualMonoid<U>,VI PU VirtualPointedSet<U>,VI PU VirtualNSet<U>{};TE <TY U = ll>CL AdditiveGroup:VI PU VirtualGroup<U>,PU AdditiveMonoid<U>{PU:IN U Transfer(CO U& u);};TE <TY U,TY M_U,TY I_U>CL AbstractGroup:VI PU VirtualGroup<U>,PU AbstractMonoid<U,M_U>,PU AbstractNSet<U,I_U>{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);};
TE <TY U,TY M_U,TY I_U> IN AbstractGroup<U,M_U,I_U>::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid<U,M_U>(MO(m_U),MO(e_U)),AbstractNSet<U,I_U>(MO(i_U)){}TE <TY U> IN U AdditiveGroup<U>::Transfer(CO U& u){RE -u;}

TE <TY R,TY U>CL VirtualRSet:VI PU UnderlyingSet<U>{PU:VI U Action(CO R& r,U u)= 0;IN U Power(U u,CO R& r);IN U ScalarProduct(CO R& r,U u);};TE <TY MAGMA,TY U = inner_t<MAGMA>>CL RegularRSet:VI PU VirtualRSet<U,U>,PU MAGMA{PU:IN RegularRSet(MAGMA magma);IN U Action(CO U& r,U u);};TE <TY R,TY U,TY O_U>CL AbstractRSet:VI PU VirtualRSet<R,U>{PU:O_U m_o_U;IN AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U);IN AbstractRSet<R,U,O_U>& OP=(CO AbstractRSet<R,U,O_U>&)NE;IN U Action(CO R& r,U u);};TE <TY R,TY O_U,TY GROUP,TY U = inner_t<GROUP>>CL AbstractModule:PU AbstractRSet<R,U,O_U>,PU GROUP{PU:IN AbstractModule(CO R& dummy,O_U o_U,GROUP M);};TE <TY R,TY U>CL Module:VI PU VirtualRSet<R,U>,PU AdditiveGroup<U>{PU:IN U Action(CO R& r,U u);};
TE <TY MAGMA,TY U> IN RegularRSet<MAGMA,U>::RegularRSet(MAGMA magma):MAGMA(MO(magma)){}TE <TY R,TY U,TY O_U> IN AbstractRSet<R,U,O_U>::AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U):m_o_U(MO(o_U)){ST_AS(is_invocable_r_v<U,O_U,R,U>);}TE <TY R,TY O_U,TY GROUP,TY U> IN AbstractModule<R,O_U,GROUP,U>::AbstractModule(CO R& dummy,O_U o_U,GROUP M):AbstractRSet<R,U,O_U>(dummy,M.One(),MO(o_U)),GROUP(MO(M)){ST_AS(is_same_v<U,inner_t<GROUP>>);}TE <TY R,TY U,TY O_U> IN AbstractRSet<R,U,O_U>& AbstractRSet<R,U,O_U>::OP=(CO AbstractRSet<R,U,O_U>&)NE{RE *TH;}TE <TY MAGMA,TY U> IN U RegularRSet<MAGMA,U>::Action(CO U& r,U u){RE TH->Product(r,MO(u));}TE <TY R,TY U,TY O_U> IN U AbstractRSet<R,U,O_U>::Action(CO R& r,U u){RE m_o_U(r,MO(u));}TE <TY R,TY U> IN U Module<R,U>::Action(CO R& r,U u){RE MO(u *= r);}TE <TY R,TY U> IN U VirtualRSet<R,U>::Power(U u,CO R& r){RE Action(r,MO(u));}TE <TY R,TY U> IN U VirtualRSet<R,U>::ScalarProduct(CO R& r,U u){RE Action(r,MO(u));}
#endif

#ifdef DEBUG
  #include "c:/Users/user/Documents/Programming/Mathematics/Algebra/Monoid/Semilattice/a_Body.hpp"
#else
TE <TY U>CL VirtualMeetSemilattice:VI PU VirtualMonoid<U>{PU:IN U Meet(U u0,CO U& u1);};TE <TY U>CL MinSemilattice:VI PU VirtualMeetSemilattice<U>,PU PointedSet<U>{PU:IN MinSemilattice(U infty_U);IN U Product(U u0,CO U& u1);};TE <TY U>CL MaxSemilattice:VI PU VirtualMeetSemilattice<U>,PU PointedSet<U>{PU:IN MaxSemilattice(U zero_U);IN U Product(U u0,CO U& u1);};
TE <TY U> IN U VirtualMeetSemilattice<U>::Meet(U u0,CO U& u1){RE TH->Product(MO(u0),u1);}TE <TY U> IN MinSemilattice<U>::MinSemilattice(U infty_U):PointedSet<U>(MO(infty_U)){}TE <TY U> IN MaxSemilattice<U>::MaxSemilattice(U zero_U):PointedSet<U>(MO(zero_U)){}TE <TY U> IN U MinSemilattice<U>::Product(U u0,CO U& u1){RE u0 < u1?MO(u0):u1;}TE <TY U> IN U MaxSemilattice<U>::Product(U u0,CO U& u1){RE u1 < u0?MO(u0):u1;}
#endif

#ifdef DEBUG
  #include "c:/Users/user/Documents/Programming/Mathematics/SetTheory/DirectProduct/AffineSpace/SqrtDecomposition/LazyEvaluation/a_Body.hpp"
#else
TE <TY L,TY R,TY U>CL VirtualBiModule:VI PU UnderlyingSet<U>{PU:VI U LAction(CO L& l,U u)= 0;VI U RAction(U u,CO R& r)= 0;IN U ScalarProduct(CO L& l,U u);IN U PW(U u,CO R& r);};TE <TY L,TY R,TY O_U_L,TY O_U_R,TY GROUP,TY U>CL AbstractBiModule:PU VirtualBiModule<L,R,U>,PU GROUP{PU:O_U_L m_o_U_L;O_U_R m_o_U_R;IN AbstractBiModule(CO L& dummy_l,CO R& dummy_r,O_U_L o_U_L,O_U_R o_U_R,GROUP M);IN AbstractBiModule<L,R,O_U_L,O_U_R,GROUP,U>& OP=(CO AbstractBiModule<L,R,O_U_L,O_U_R,GROUP,U>&)NE;IN U LAction(CO L& l,U u);IN U RAction(U u,CO R& r);};TE <TY L,TY R,TY O_U_L,TY O_U_R,TY GROUP> AbstractBiModule(CO L& dummy_l,CO R& dummy_r,O_U_L o_U_L,O_U_R o_U_R,GROUP M)-> AbstractBiModule<L,R,inner_t<GROUP>,O_U_L,O_U_R,GROUP>;TE <TY L,TY R,TY U>CL BiModule:VI PU VirtualBiModule<L,R,U>,PU AdditiveGroup<U>{PU:IN U LAction(CO L& r,U u);IN U RAction(U u,CO R& r);};
TE <TY L,TY R,TY O_U_L,TY O_U_R,TY GROUP,TY U> IN AbstractBiModule<L,R,O_U_L,O_U_R,GROUP,U>::AbstractBiModule(CO L& dummy_l,CO R& dummy_r,O_U_L o_U_L,O_U_R o_U_R,GROUP M):GROUP(MO(M)),m_o_U_L(MO(o_U_L)),m_o_U_R(MO(o_U_R)){ST_AS(is_same_v<U,inner_t<GROUP>> && is_invocable_r_v<U,O_U_L,CO L&,U> && is_invocable_r_v<U,O_U_R,U,CO R&>);}TE <TY L,TY R,TY O_U_L,TY O_U_R,TY GROUP,TY U> IN U AbstractBiModule<L,R,O_U_L,O_U_R,GROUP,U>::LAction(CO L& l,U u){RE m_o_U_L(l,MO(u));}TE <TY L,TY R,TY U> IN U BiModule<L,R,U>::LAction(CO L& l,U u){RE MO(u *= l);}TE <TY L,TY R,TY O_U_L,TY O_U_R,TY GROUP,TY U> IN U AbstractBiModule<L,R,O_U_L,O_U_R,GROUP,U>::RAction(U u,CO R& r){RE m_o_U_R(MO(u),r);}TE <TY L,TY R,TY U> IN U BiModule<L,R,U>::RAction(U u,CO R& r){RE MO(u *= r);}TE <TY L,TY R,TY U> IN U VirtualBiModule<L,R,U>::ScalarProduct(CO L& l,U u){RE LAction(l,MO(u));}TE <TY L,TY R,TY U> IN U VirtualBiModule<L,R,U>::PW(U u,CO R& r){RE RAction(MO(u),r);}

CL SqrtDecompositionCoordinate{PU:int m_N;int m_N_sqrt;int m_N_d;int m_N_m;IN SqrtDecompositionCoordinate(CRI N = 0);IN SqrtDecompositionCoordinate(CRI N,CRI N_sqrt);IN CRI size()CO NE;IN CRI BucketSize()CO NE;IN CRI BucketCount()CO NE;};
IN SqrtDecompositionCoordinate::SqrtDecompositionCoordinate(CRI N):SqrtDecompositionCoordinate(N,RoundUpSqrt(N)){};IN SqrtDecompositionCoordinate::SqrtDecompositionCoordinate(CRI N,CRI N_sqrt):m_N(N),m_N_sqrt(N_sqrt),m_N_d((m_N + m_N_sqrt - 1)/ m_N_sqrt),m_N_m(m_N_d * m_N_sqrt){}IN CRI SqrtDecompositionCoordinate::size()CO NE{RE m_N;}IN CRI SqrtDecompositionCoordinate::BucketSize()CO NE{RE m_N_sqrt;}IN CRI SqrtDecompositionCoordinate::BucketCount()CO NE{RE m_N_d;}

#define SFINAE_FOR_SD_S enable_if_t<is_invocable_r_v<bool,F,U,int>>*

TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE>CL LazySqrtDecomposition:PU SqrtDecompositionCoordinate{PU:PT_MAGMA m_L;RN_BIMODULE m_M;VE<U> m_a;VE<U> m_b;VE<U> m_lazy_substitution;VE<bool> m_suspended;VE<R> m_lazy_action;TE <TY...Args> IN LazySqrtDecomposition(PT_MAGMA L,RN_BIMODULE M,CRI N = 0,CO Args&... args);TE <TY...Args> IN LazySqrtDecomposition(PT_MAGMA L,RN_BIMODULE M,VE<U> a,CO Args&... args);TE <TY...Args> IN VO Initialise(Args&&... args);IN VO Set(CRI i,CO U& u);IN VO IntervalSet(CRI i_start,CRI i_final,CO U& u);IN VO IntervalAct(CRI i_start,CRI i_final,CO R& r);IN U OP[](CRI i);IN U Get(CRI i);IN U IntervalProduct(CRI i_start,CRI i_final);TE <TY F,SFINAE_FOR_SD_S = nullptr> IN int Search(CRI i_start,CO F& f,CO bool& reversed = false);IN int Search(CRI i_start,CO U& u,CO bool& reversed = false);IN VO COruct();IN VO SetProduct(CRI i);IN VO SolveSuspendedSubstitution(CRI d,CO U& u);IN VO IntervalSet_Body(CRI i_min,CRI i_ulim,CO U& u);IN VO SolveSuspendedAction(CRI d);IN VO IntervalAct_Body(CRI i_min,CRI i_ulim,CO R& r);IN U IntervalProduct_Body(CRI i_min,CRI i_ulim);TE <TY F> int Search_Body(CRI i_start,CO F& f,U product_temp);TE <TY F> int SearchReverse_Body(CRI i_final,CO F& f,U sum_temp);};TE <TY PT_MAGMA,TY RN_BIMODULE,TY...Args> LazySqrtDecomposition(PT_MAGMA L,RN_BIMODULE M,CO Args&... args)-> LazySqrtDecomposition<inner_t<PT_MAGMA>,PT_MAGMA,inner_t<RN_BIMODULE>,RN_BIMODULE>;
TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> TE <TY...Args> IN LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::LazySqrtDecomposition(PT_MAGMA L,RN_BIMODULE M,CRI N,CO Args&... args):SqrtDecompositionCoordinate(N,args...),m_L(MO(L)),m_M(MO(M)),m_a(N,m_M.One()),m_b(m_N_d,m_M.One()),m_lazy_substitution(m_b),m_suspended(m_N_d),m_lazy_action(m_N_d,m_L.Point()){COruct();}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> TE <TY...Args> IN LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::LazySqrtDecomposition(PT_MAGMA L,RN_BIMODULE M,VE<U> a,CO Args&... args):SqrtDecompositionCoordinate(a.SZ(),args...),m_L(MO(L)),m_M(MO(M)),m_a(MO(a)),m_b(m_N_d,m_M.One()),m_lazy_substitution(m_b),m_suspended(m_N_d),m_lazy_action(m_N_d,m_L.Point()){COruct();}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> IN VO LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::COruct(){ST_AS(is_same_v<R,inner_t<PT_MAGMA>> && is_same_v<U,inner_t<RN_BIMODULE>>);m_a.resize(m_N_m,m_M.One());int i_min = 0;int i_ulim = m_N_sqrt;for(int d = 0;d < m_N_d;d++){U& m_bd = m_b[d];for(int i = i_min;i < i_ulim;i++){m_bd = m_M.Product(MO(m_bd),m_a[i]);}i_min = i_ulim;i_ulim += m_N_sqrt;}}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> TE <TY...Args> IN VO LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::Initialise(Args&&...args){LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE> temp{m_L,m_M,forward<Args>(args)...};SqrtDecompositionCoordinate::OP=(temp);m_a = MO(temp.m_a);m_b = MO(temp.m_b);m_lazy_substitution = MO(temp.m_lazy_substitution);m_suspended = MO(temp.m_suspended);m_lazy_action = MO(temp.m_lazy_action);}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> IN VO LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::Set(CRI i,CO U& u){CO int d = i / m_N_sqrt;CO int i_min = d * m_N_sqrt;CO int i_ulim = i_min + m_N_sqrt;U& m_ai = m_a[i];if(m_suspended[d]){U& m_lazy_substitution_d = m_lazy_substitution[d];if(m_lazy_substitution_d != u){SolveSuspendedSubstitution(d,m_lazy_substitution_d);m_ai = u;m_b[d]= m_M.Product(m_M.Product(m_M.Power(m_lazy_substitution_d,i - i_min),u),m_M.Power(m_lazy_substitution_d,i_ulim -(i + 1)));}}else{SolveSuspendedAction(d);if(m_ai != u){m_ai = u;SetProduct(d);}}RE;}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> IN VO LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::IntervalSet(CRI i_start,CRI i_final,CO U& u){CO int i_min = max(i_start,0);CO int i_ulim = min(i_final + 1,m_N);CO int d_0 =(i_min + m_N_sqrt - 1)/ m_N_sqrt;CO int d_1 = max(d_0,i_ulim / m_N_sqrt);CO int d_0_N_sqrt = d_0 * m_N_sqrt;CO int d_1_N_sqrt = d_1 * m_N_sqrt;CO int i_0 = min(d_0_N_sqrt,i_ulim);CO int i_1 = max(i_0,d_1_N_sqrt);if(i_min < i_0){CO int d_0_minus = d_0 - 1;CO int d_0_N_sqrt_minus = d_0_N_sqrt - m_N_sqrt;U& m_bd = m_b[d_0_minus];VE<bool>::reference m_suspended_d = m_suspended[d_0_minus];if(m_suspended_d){U& m_lazy_substitution_d = m_lazy_substitution[d_0_minus];IntervalSet_Body(d_0_N_sqrt_minus,i_min,m_lazy_substitution_d);IntervalSet_Body(i_min,i_0,u);IntervalSet_Body(i_0,d_0_N_sqrt,m_lazy_substitution_d);m_suspended_d = false;m_bd = m_M.Product(m_M.Product(m_M.Power(m_lazy_substitution_d,i_min - d_0_N_sqrt_minus),m_M.Power(u,i_0 - i_min)),m_M.Power(m_lazy_substitution_d,d_0_N_sqrt - i_0));}else{SolveSuspendedAction(d_0_minus);IntervalSet_Body(i_min,i_0,u);m_bd = m_M.Product(m_M.Product(IntervalProduct_Body(d_0_N_sqrt_minus,i_min),m_M.Power(u,i_0 - i_min)),IntervalProduct_Body(i_0,d_0_N_sqrt));}}CO U pw = m_M.Power(u,m_N_sqrt);for(int d = d_0;d < d_1;d++){m_b[d]= pw;m_lazy_substitution[d]= u;m_suspended[d]= true;m_lazy_action[d]= m_L.Point();}if(i_1 < i_ulim){CO int d_1_N_sqrt_plus = d_1_N_sqrt + m_N_sqrt;U& m_bd = m_b[d_1];VE<bool>::reference m_suspended_d = m_suspended[d_1];if(m_suspended_d){CO U& m_lazy_substitution_d = m_lazy_substitution[d_1];IntervalSet_Body(d_1_N_sqrt,i_1,m_lazy_substitution_d);IntervalSet_Body(i_1,i_ulim,u);IntervalSet_Body(i_ulim,d_1_N_sqrt_plus,m_lazy_substitution_d);m_suspended_d = false;m_bd = m_M.Product(m_M.Product(m_M.Power(m_lazy_substitution_d,i_1 - d_1_N_sqrt),m_M.Power(u,i_ulim - i_1)),m_M.Power(m_lazy_substitution_d,d_1_N_sqrt_plus - i_ulim));}else{SolveSuspendedAction(d_1);IntervalSet_Body(i_1,i_ulim,u);m_bd = m_M.Product(m_M.Product(IntervalProduct_Body(d_1_N_sqrt,i_1),m_M.Power(u,i_ulim - i_1)),IntervalProduct_Body(i_ulim,d_1_N_sqrt_plus));}}RE;}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> IN VO LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::IntervalAct(CRI i_start,CRI i_final,CO R& r){if(r != m_L.Point()){CO int i_min = max(i_start,0);CO int i_ulim = min(i_final + 1,m_N);CO int d_0 =(i_min + m_N_sqrt - 1)/ m_N_sqrt;CO int d_1 = max(d_0,i_ulim / m_N_sqrt);CO int d_0_N_sqrt = d_0 * m_N_sqrt;CO int d_1_N_sqrt = d_1 * m_N_sqrt;CO int i_0 = min(d_0_N_sqrt,i_ulim);CO int i_1 = max(i_0,d_1_N_sqrt);if(i_min < i_0){CO int d_0_minus = d_0 - 1;CO int d_0_N_sqrt_minus = d_0_N_sqrt - m_N_sqrt;VE<bool>::reference m_suspended_d = m_suspended[d_0_minus];if(m_suspended_d){CO U& m_lazy_substitution_d = m_lazy_substitution[d_0_minus];U& m_bd = m_b[d_0_minus];CO U u = m_M.ScalarProduct(r,m_lazy_substitution_d);IntervalSet_Body(d_0_N_sqrt_minus,i_min,m_lazy_substitution_d);IntervalSet_Body(i_min,i_0,u);IntervalSet_Body(i_0,d_0_N_sqrt,m_lazy_substitution_d);m_suspended_d = false;m_bd = m_M.Product(m_M.Product(m_M.Power(m_lazy_substitution_d,i_min - d_0_N_sqrt_minus),m_M.Power(u,i_0 - i_min)),m_M.Power(m_lazy_substitution_d,d_0_N_sqrt - i_0));}else{R& m_lazy_action_d = m_lazy_action[d_0_minus];if(m_lazy_action_d == m_L.Point()){IntervalAct_Body(i_min,i_0,r);}else{IntervalAct_Body(d_0_N_sqrt_minus,i_min,m_lazy_action_d);IntervalAct_Body(i_min,i_0,m_L.Product(r,m_lazy_action_d));IntervalAct_Body(i_0,d_0_N_sqrt,m_lazy_action_d);m_lazy_action_d = m_L.Point();}SetProduct(d_0_minus);}}for(int d = d_0;d < d_1;d++){U& m_bd = m_b[d];m_bd = m_M.ScalarProduct(r,m_bd);if(m_suspended[d]){U& m_lazy_substitution_d = m_lazy_substitution[d];m_lazy_substitution_d = m_M.ScalarProduct(r,m_lazy_substitution_d);}else{R& m_lazy_action_d = m_lazy_action[d];m_lazy_action_d = m_L.Product(r,m_lazy_action_d);}}if(i_1 < i_ulim){CO int d_1_N_sqrt_plus = d_1_N_sqrt + m_N_sqrt;VE<bool>::reference m_suspended_d = m_suspended[d_1];if(m_suspended_d){CO U& m_lazy_substitution_d = m_lazy_substitution[d_1];U& m_bd = m_b[d_1];CO U u = m_M.ScalarProduct(r,m_lazy_substitution_d);IntervalSet_Body(d_1_N_sqrt,i_1,m_lazy_substitution_d);IntervalSet_Body(i_1,i_ulim,u);IntervalSet_Body(i_ulim,d_1_N_sqrt_plus,m_lazy_substitution_d);m_suspended_d = false;m_bd = m_M.Product(m_M.Product(m_M.Power(m_lazy_substitution_d,i_1 - d_1_N_sqrt),m_M.Power(u,i_ulim - i_1)),m_M.Power(m_lazy_substitution_d,d_1_N_sqrt_plus - i_ulim));}else{R& m_lazy_action_d = m_lazy_action[d_1];if(m_lazy_action_d == m_L.Point()){IntervalAct_Body(i_1,i_ulim,r);SetProduct(d_1);}else{IntervalAct_Body(d_1_N_sqrt,i_1,m_lazy_action_d);IntervalAct_Body(i_1,i_ulim,m_L.Product(r,m_lazy_action_d));IntervalAct_Body(i_ulim,d_1_N_sqrt_plus,m_lazy_action_d);m_lazy_action_d = m_L.Point();SetProduct(d_1);}}}}RE;}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> IN U LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::IntervalProduct_Body(CRI i_min,CRI i_ulim){U AN = m_M.One();for(int i = i_min;i < i_ulim;i++){AN = m_M.Product(MO(AN),m_a[i]);}RE AN;}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> IN VO LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::SetProduct(CRI d){U& m_bd = m_b[d]= m_M.One();CO int i_min = d * m_N_sqrt;CO int i_ulim = i_min + m_N_sqrt;for(int i = i_min;i < i_ulim;i++){m_bd = m_M.Product(MO(m_bd),m_a[i]);}RE;}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> IN VO LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::SolveSuspendedSubstitution(CRI d,CO U& u){CO int i_min = d * m_N_sqrt;IntervalSet_Body(i_min,i_min + m_N_sqrt,u);m_suspended[d]= false;RE;}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> IN VO LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::IntervalSet_Body(CRI i_min,CRI i_ulim,CO U& u){for(int i = i_min;i < i_ulim;i++){m_a[i]= u;}RE;}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> IN VO LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::SolveSuspendedAction(CRI d){R& m_lazy_action_d = m_lazy_action[d];if(m_lazy_action_d != m_L.Point()){CO int i_min = d * m_N_sqrt;CO int i_ulim = i_min + m_N_sqrt;IntervalAct_Body(i_min,i_ulim,m_lazy_action_d);U& m_bd = m_b[d];m_bd = m_M.ScalarProduct(m_lazy_action_d,m_bd);m_lazy_action_d = m_L.Point();}RE;}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> IN U LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::OP[](CRI i){AS(0 <= i && i < m_N);CO int d = i / m_N_sqrt;RE m_suspended[d]?m_lazy_substitution[d]:m_M.ScalarProduct(m_lazy_action[d],m_a[i]);}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> IN U LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::Get(CRI i){RE OP[](i);}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> IN U LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::IntervalProduct(CRI i_start,CRI i_final){CO int i_min = max(i_start,0);CO int i_ulim = min(i_final + 1,m_N);CO int d_0 =(i_min + m_N_sqrt - 1)/ m_N_sqrt;CO int d_1 = max(d_0,i_ulim / m_N_sqrt);CO int i_0 = min(d_0 * m_N_sqrt,i_ulim);CO int i_1 = max(i_0,d_1 * m_N_sqrt);U AN = m_M.One();if(i_min < i_0){CO int d_0_minus = d_0 - 1;AN = m_suspended[d_0_minus]?m_M.Power(m_lazy_substitution[d_0_minus],i_0 - i_min):m_M.ScalarProduct(m_lazy_action[d_0_minus],IntervalProduct_Body(i_min,i_0));}for(int d = d_0;d < d_1;d++){AN = m_M.Product(MO(AN),m_b[d]);}if(i_1 < i_ulim){AN = m_M.Product(MO(AN),m_suspended[d_1]?m_M.Power(m_lazy_substitution[d_1],i_ulim - i_1):m_M.ScalarProduct(m_lazy_action[d_1],IntervalProduct_Body(i_1,i_ulim)));}RE AN;}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> IN VO LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::IntervalAct_Body(CRI i_min,CRI i_ulim,CO R& r){for(int i = i_min;i < i_ulim;i++){U& m_ai = m_a[i];m_ai = m_M.ScalarProduct(r,m_ai);}RE;}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> TE <TY F,SFINAE_FOR_SD_S> IN int LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::Search(CRI i_start,CO F& f,CO bool& reversed){RE reversed?SearchReverse_Body(i_start,f,m_M.One()):Search_Body(i_start,f,m_M.One());}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> IN int LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::Search(CRI i_start,CO U& u,CO bool& reversed){RE Search(i_start,[&](CO U& product,CRI){RE !(product < u);},reversed);}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> TE <TY F> int LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::Search_Body(CRI i_start,CO F& f,U product_temp){CO int i_min = max(i_start,0);CO int d_0 = i_min / m_N_sqrt + 1;CO int i_0 = min(d_0 * m_N_sqrt,m_N);if(i_min < i_0){CO int d_0_minus = d_0 - 1;if(m_suspended[d_0_minus]){SolveSuspendedSubstitution(d_0_minus,m_lazy_substitution[d_0_minus]);}else{SolveSuspendedAction(d_0_minus);}}for(int i = i_min;i < i_0;i++){product_temp = m_M.Product(MO(product_temp),m_a[i]);if(f(product_temp,i)){RE i;}}for(int d = d_0;d < m_N_d;d++){U product_next = m_M.Product(product_temp,m_b[d]);if(f(product_next,min((d + 1)* m_N_sqrt,m_N)- 1)){RE Search_Body(d * m_N_sqrt,f,MO(product_temp));}product_temp = MO(product_next);}RE -1;}TE <TY R,TY PT_MAGMA,TY U,TY RN_BIMODULE> TE <TY F> int LazySqrtDecomposition<R,PT_MAGMA,U,RN_BIMODULE>::SearchReverse_Body(CRI i_final,CO F& f,U product_temp){CO int i_max = min(i_final,m_N - 1);CO int d_1 = i_max / m_N_sqrt;CO int i_1 = max(d_1 * m_N_sqrt,0);if(m_suspended[d_1]){SolveSuspendedSubstitution(d_1,m_lazy_substitution[d_1]);}else{SolveSuspendedAction(d_1);}for(int i = i_max;i >= i_1;i--){product_temp = m_M.Product(m_a[i],product_temp);if(f(product_temp,i)){RE i;}}for(int d = d_1 - 1;d >= 0;d--){U product_next = m_M.Product(m_b[d],product_temp);if(f(product_next,d * m_N_sqrt)){RE Search_Body((d + 1)* m_N_sqrt - 1,f,MO(product_temp));}product_temp = MO(product_next);}RE -1;}
#endif

// AAA ライブラリは以上に挿入する。

#define INCLUDE_MAIN
#include __FILE__
#else // INCLUDE_LIBRARY
#ifdef DEBUG
  #define _GLIBCXX_DEBUG
  #define SIGNAL signal( SIGABRT , &AlertAbort );
  #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 )
  #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )
  #define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl
  #define CERRNS( ... ) VariadicCoutNonSep( cerr , __VA_ARGS__ )
  #define CERR_A( I , N , A ) CoutArray( cerr , I , N , A ) << endl
  int exec_mode = 0;
#else
  #pragma GCC optimize ( "O3" )
  #pragma GCC optimize ( "unroll-loops" )
  #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
  #define SIGNAL 
  #define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 )
  #define ASSERT( A , MIN , MAX ) AS( ( MIN ) <= A && A <= ( MAX ) )
  #define CERR( ... ) 
  #define CERRNS( ... ) 
  #define CERR_A( I , N , A ) 
#endif
#ifdef REACTIVE
  #ifdef DEBUG
    #define RSET( A , ... ) A = __VA_ARGS__
  #else
    #define RSET( A , ... ) cin >> A
  #endif
  #define RCIN( LL , A , ... ) LL A; RSET( A , __VA_ARGS__ )
  #define ENDL endl
#else
  #define ENDL "\n"
#endif
#ifdef USE_GETLINE
  #define SET_SEPARATE( SEPARATOR , ... ) VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )
  #define SET( ... ) SET_SEPARATE( '\n' , __VA_ARGS__ )
  #define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; SET_SEPARATE( SEPARATOR , __VA_ARGS__ )
  #define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ )
  #define FINISH_MAIN GETLINE( test_case_num_str ); test_case_num = stoi( test_case_num_str ); ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } CHECK_REDUNDANT_INPUT; }
#else
  #define SET( ... ) VariadicCin( cin , __VA_ARGS__ )
  #define CIN( LL , ... ) LL __VA_ARGS__; SET( __VA_ARGS__ )
  #define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I , __VA_ARGS__ ); }
  #define CIN_A( LL , I , N , ... ) VE<LL> __VA_ARGS__; SET_A( I , N , __VA_ARGS__ )
  #define CIN_AA( LL , I0 , N0 , I1 , N1 , VAR ) VE<VE<LL>> VAR( N0 + I0 ); FOR( VARIABLE_FOR_CIN_AA , 0 , N0 ){ SET_A( I1 , N1 , VAR[VARIABLE_FOR_CIN_AA + I0] ); }
  #define FINISH_MAIN SET_ASSERT( test_case_num , 1 , test_case_num_bound ); } REPEAT( test_case_num ){ Solve(); } CHECK_REDUNDANT_INPUT; }
#endif
#include <bits/stdc++.h>
using namespace std;
#define START_MAIN int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ); SIGNAL;
#define REPEAT_MAIN( BOUND ) START_MAIN; CEXPR( int , test_case_num_bound , BOUND ); int test_case_num = 1; if constexpr( test_case_num_bound > 1 ){ CERR( "テストケースの個数を入力してください。" ); FINISH_MAIN;
#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now(); double loop_average_time = 0.0 , loop_start_time = loop_average_time , current_time = loop_start_time; int loop_count = current_time; assert( loop_count == 0 )
#define CURRENT_TIME ( current_time = static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 ) )
#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME , loop_count == 0 ? loop_start_time = current_time : loop_average_time = ( current_time - loop_start_time ) / loop_count , ++loop_count , current_time < TL_MS - loop_average_time * 2 - 100.0 )
#define CEXPR( LL , BOUND , VALUE ) CE LL BOUND = VALUE
#define SET_ASSERT( A , MIN , MAX ) SET( A ); ASSERT( A , MIN , MAX )
#define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); }
#define SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_AA0 , 0 , N0 ){ FOR( VARIABLE_FOR_SET_AA1 , 0 , N1 ){ SET_ASSERT( A[VARIABLE_FOR_SET_AA0 + I0][VARIABLE_FOR_SET_AA1 + I1] , MIN , MAX ); } }
#define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector<decldecay_t( MAX )> A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX )
#define CIN_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX ) vector A( N0 + I0 , vector<decldecay_t( MAX )>( N1 + I1 ) ); SET_AA_ASSERT( I0 , N0 , I1 , N1 , A , MIN , MAX )
#define PR1( A1 , ... ) A1
#define PR2( A1 , A2 , ... ) A2
#define PR3( A1 , A2 , A3 , ... ) A3
#define FOR_( VAR , INITIAL , FINAL , UPPER , COMP , INCR ) for( decldecay_t( UPPER ) VAR = INITIAL ; VAR COMP ( FINAL ) ; VAR INCR )
#define FOR( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , < , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) )
#define FOREQ( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , PR1( __VA_ARGS__ ) , <= , PR3( __VA_ARGS__ , += PR2( __VA_ARGS__ , ? ) , ++ ) )
#define FOREQINV( VAR , INITIAL , ... ) FOR_( VAR , INITIAL , PR1( __VA_ARGS__ ) , INITIAL , + 1 > , PR3( __VA_ARGS__ , -= PR2( __VA_ARGS__ , ? ) , -- ) )
#define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN()
#define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define RUN( ARRAY , ... ) for( auto&& __VA_ARGS__ : ARRAY )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS ); cerr << fixed << setprecision( DECIMAL_DIGITS )
#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL
#define COUTNS( ... ) VariadicCoutNonSep( cout , __VA_ARGS__ )
#define COUT_A( I , N , A ) CoutArray( cout , I , N , A ) << ENDL
#define DERR( ... ) 
#define DERRNS( ... ) 
#define DERR_A( I , N , A ) 
#define WHAT( ... ) 
#define RETURN( ... ) COUT( __VA_ARGS__ ); return

// 型のエイリアス
#define decldecay_t( VAR ) decay_t<decltype( VAR )>
template <typename F , typename...Args> using ret_t = decltype( declval<F>()( declval<Args>()... ) );
template <typename T> using inner_t = typename T::type;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using lld = __float128;
using path = pair<int,ll>;

/* VVV 常設ライブラリの非圧縮版は以下に挿入する。*/
// Random
ll GetRand( const ll& Rand_min , const ll& Rand_max ) { assert( Rand_min <= Rand_max ); ll answer = time( NULL ); return answer * rand() % ( Rand_max + 1 - Rand_min ) + Rand_min; }

// Set
#define DC_OF_HASH( ... ) DECLARATION_OF_HASH( __VA_ARGS__ )

#define DECLARATION_OF_HASH( ... )				\
  struct hash<__VA_ARGS__>					\
  {								\
								\
    inline size_t operator()( const __VA_ARGS__& n ) const;	\
								\
  };								\

#define DEFINITION_OF_POP_FOR_SET( SET )                                \
  template <typename T> inline T pop_max( SET& S ) { assert( !S.empty() ); auto itr = --S.end(); T answer = *itr; S.erase( itr ); return answer; } \
  template <typename T> inline T pop_min( SET& S ) { assert( !S.empty() ); auto itr = S.begin(); T answer = *itr; S.erase( itr ); return answer; } \
  template <typename T> inline SET& operator<<=( SET& S , T t ) { S.insert( move( t ) ); return S; } \
  template <typename T , typename U> inline SET& operator<<=( SET& S , U&& u ) { S.insert( T{ forward<U>( u ) } ); return S; } \
  template <typename T> inline SET& operator>>=( SET& S , const T& t ) { auto itr = S.lower_bound( t ); assert( itr != S.end() && *itr == t ); S.erase( itr ); return S; } \
  template <typename T , typename U> inline SET& operator>>=( SET& S , const U& u ) { return S >>= T{ u }; } \
  template <typename T> inline const T& Get( const SET& S , int i ) { auto begin = S.begin() , end = S.end(); auto& itr = i < 0 ? ( ++i , --end ) : begin; while( i > 0 && itr != end ){ --i; ++itr; } while( i < 0 && itr != begin ){ ++i; --itr; } assert( i == 0 ); return *itr; } \

#define DEFINITION_OF_UNION_FOR_SET( SET )                              \
  template <typename T> inline SET& operator|=( SET& S0 , SET S1 ) { S0.merge( move( S1 ) ); return S0; } \
  template <typename T> inline SET operator|( SET S0 , SET S1 ) { return move( S0.size() < S1.size() ? S1 |= move( S0 ) : S0 |= move( S1 ) ); } \

class is_ordered
{

private:
  is_ordered() = delete;
  template <typename T> static constexpr auto Check( const T& t ) -> decltype( t < t , true_type() );
  static constexpr false_type Check( ... );

public:
  template <typename T> static constexpr const bool value = is_same_v< decltype( Check( declval<T>() ) ) , true_type >;

};

template <typename T>
using Set = conditional_t<is_constructible_v<unordered_set<T>>,unordered_set<T>,conditional_t<is_ordered::value<T>,set<T>,void>>;

template <typename SET , typename T> inline typename SET::const_iterator MaximumLeq( const SET& S , const T& t ) { auto itr = S.upper_bound( t ); return itr == S.begin() ? S.end() : --itr; }
template <typename SET , typename T> inline typename SET::const_iterator MaximumLt( const SET& S , const T& t ) { auto itr = S.lower_bound( t ); return itr == S.begin() ? S.end() : --itr; }
template <typename SET , typename T> inline typename SET::const_iterator MinimumGeq( const SET& S , const T& t ) { return S.lower_bound( t ); }
template <typename SET , typename T> inline typename SET::const_iterator MinimumGt( const SET& S , const T& t ) { return S.upper_bound( t ); }

template <typename SET , typename ITERATOR> inline void EraseBack( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); }
template <typename SET , typename ITERATOR> inline void EraseFront( SET& S , ITERATOR& itr ) { itr = S.erase( itr ); itr == S.begin() ? itr = S.end() : --itr; }

template <template <typename...> typename SET , typename T , typename...Args> inline bool In( const T& t , const SET<T,Args...>& S ) { return S.count( t ) > 0; }

DEFINITION_OF_POP_FOR_SET( set<T> );
DEFINITION_OF_POP_FOR_SET( unordered_set<T> );
DEFINITION_OF_POP_FOR_SET( multiset<T> );
DEFINITION_OF_POP_FOR_SET( unordered_multiset<T> );

DEFINITION_OF_UNION_FOR_SET( set<T> );
DEFINITION_OF_UNION_FOR_SET( unordered_set<T> );
DEFINITION_OF_UNION_FOR_SET( multiset<T> );
DEFINITION_OF_UNION_FOR_SET( unordered_multiset<T> );
DEFINITION_OF_UNION_FOR_SET( vector<T> );
DEFINITION_OF_UNION_FOR_SET( list<T> );

// Tuple
#define DEFINITION_OF_ARITHMETIC_FOR_TUPLE( OPR )			\
  template <typename T , typename U , template <typename...> typename PAIR> inline auto operator OPR ## =( PAIR<T,U>& t0 , const PAIR<T,U>& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = get<0>( t1 ); get<1>( t0 ) OPR ## = get<1>( t1 ); return t0; } \
  template <typename T , typename U , typename V , template <typename...> typename TUPLE> inline auto operator OPR ## =( TUPLE<T,U,V>& t0 , const TUPLE<T,U,V>& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = get<0>( t1 ); get<1>( t0 ) OPR ## = get<1>( t1 ); get<2>( t0 ) OPR ## = get<2>( t1 ); return t0; } \
    template <typename T , typename U , typename V , typename W , template <typename...> typename TUPLE> inline auto operator OPR ## =( TUPLE<T,U,V,W>& t0 , const TUPLE<T,U,V,W>& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = get<0>( t1 ); get<1>( t0 ) OPR ## = get<1>( t1 ); get<2>( t0 ) OPR ## = get<2>( t1 ); get<3>( t0 ) OPR ## = get<3>( t1 ); return t0; } \
  template <typename ARG , typename T , typename U , template <typename...> typename PAIR> inline auto operator OPR ## =( PAIR<T,U>& t0 , const ARG& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = t1; get<1>( t0 ) OPR ## = t1; return t0; } \
  template <typename ARG , typename T , typename U , typename V , template <typename...> typename TUPLE> inline auto operator OPR ## =( TUPLE<T,U,V>& t0 , const ARG& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = t1; get<1>( t0 ) OPR ## = t1; get<2>( t0 ) OPR ## = t1; return t0; } \
    template <typename ARG , typename T , typename U , typename V , typename W , template <typename...> typename TUPLE> inline auto operator OPR ## =( TUPLE<T,U,V,W>& t0 , const ARG& t1 ) -> decltype( ( get<0>( t0 ) , t0 ) )& { get<0>( t0 ) OPR ## = t1; get<1>( t0 ) OPR ## = t1; get<2>( t0 ) OPR ## = t1; get<3>( t0 ) OPR ## = t1; return t0; } \
  template <template <typename...> typename TUPLE , typename...ARGS , typename ARG> inline auto operator OPR( const TUPLE<ARGS...>& t0 , const ARG& t1 ) -> decldecay_t( ( get<0>( t0 ) , t0 ) ) { auto t = t0; return move( t OPR ## = t1 ); } \

#define DEFINITION_OF_INCREMENT_FOR_TUPLE( INCR )			\
  template <typename T , typename U , template <typename...> typename PAIR> inline auto operator INCR( PAIR<T,U>& t ) -> decltype( ( get<0>( t ) , t ) )& { INCR get<0>( t ); INCR get<1>( t ); return t; } \
  template <typename T , typename U , typename V , template <typename...> typename TUPLE> inline auto operator INCR ( TUPLE<T,U,V>& t ) -> decltype( ( get<0>( t ) , t ) )& { INCR get<0>( t ); INCR get<1>( t ); INCR get<2>( t ); return t; } \
  template <typename T , typename U , typename V , typename W , template <typename...> typename TUPLE> inline auto operator INCR ( TUPLE<T,U,V,W>& t ) -> decltype( ( get<0>( t ) , t ) )& { INCR get<0>( t ); INCR get<1>( t ); INCR get<2>( t ); INCR get<3>( t ); return t; } \

DEFINITION_OF_ARITHMETIC_FOR_TUPLE( + );
template <typename T , typename U , template <typename...> typename V> inline auto operator-( const V<T,U>& t ) -> decltype( get<0>( t ) , t ) { return { -get<0>( t ) , -get<1>( t ) }; }
template <typename T , typename U , typename V> inline tuple<T,U,V> operator-( const tuple<T,U,V>& t ) { return { -get<0>( t ) , -get<1>( t ) , -get<2>( t ) }; }
template <typename T , typename U , typename V , typename W> inline tuple<T,U,V,W> operator-( const tuple<T,U,V,W>& t ) { return { -get<0>( t ) , -get<1>( t ) , -get<2>( t ) , -get<3>( t ) }; }
DEFINITION_OF_ARITHMETIC_FOR_TUPLE( - );
DEFINITION_OF_ARITHMETIC_FOR_TUPLE( * );
DEFINITION_OF_ARITHMETIC_FOR_TUPLE( / );
DEFINITION_OF_ARITHMETIC_FOR_TUPLE( % );

DEFINITION_OF_INCREMENT_FOR_TUPLE( ++ );
DEFINITION_OF_INCREMENT_FOR_TUPLE( -- );

template <class Traits , typename T> inline basic_istream<char,Traits>& operator>>( basic_istream<char,Traits>& is , tuple<T>& arg ){ return is >> get<0>( arg ); }
template <class Traits , typename T , typename U , template <typename...> typename V> inline auto operator>>( basic_istream<char,Traits>& is , V<T,U>& arg ) -> decltype((get<0>(arg),is))& { return is >> get<0>( arg ) >> get<1>( arg ); }
template <class Traits , typename T , typename U , typename V> inline basic_istream<char,Traits>& operator>>( basic_istream<char,Traits>& is , tuple<T,U,V>& arg ) { return is >> get<0>( arg ) >> get<1>( arg ) >> get<2>( arg ); }
template <class Traits , typename T , typename U , typename V , typename W> inline basic_istream<char,Traits>& operator>>( basic_istream<char,Traits>& is , tuple<T,U,V,W>& arg ) { return is >> get<0>( arg ) >> get<1>( arg ) >> get<2>( arg ) >> get<3>( arg ); }

template <class Traits , typename T> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const tuple<T>& arg ) { return os << get<0>( arg ); }
template <class Traits , typename T , typename U , template <typename...> typename V> inline auto operator<<( basic_ostream<char,Traits>& os , const V<T,U>& arg ) -> decltype((get<0>(arg),os))& { return os << get<0>( arg ) << " " << get<1>( arg ); }
template <class Traits , typename T , typename U , typename V> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const tuple<T,U,V>& arg ) { return os << get<0>( arg ) << " " << get<1>( arg ) << " " << get<2>( arg ); }
template <class Traits , typename T , typename U , typename V , typename W> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const tuple<T,U,V,W>& arg ) { return os << get<0>( arg ) << " " << get<1>( arg ) << " " << get<2>( arg ) << " " << get<3>( arg ); }

template <int n>
class TupleAccessIndex
{};

template <typename...Types>
class Tuple :
public tuple<Types...>
{

public:
  inline Tuple( Types&&... args );
  template <typename...Args> inline Tuple( Args&&... args );
  
  template <int n> inline auto& operator[]( const TupleAccessIndex<n>& i ) noexcept;
  template <int n> inline const auto& operator[]( const TupleAccessIndex<n>& i ) const noexcept;

};

// structural binding用
template <typename...Types>
class tuple_size<Tuple<Types...>> :
  public tuple_size<tuple<Types...>>
{};

template <size_t n , typename...Types>
class tuple_element<n,Tuple<Types...>> :
  public tuple_element<n,tuple<Types...>>
{};

template <typename T , typename U> using Pair = Tuple<T,U>;
template <typename INT> using T2 = Tuple<INT,INT>;
template <typename INT> using T3 = Tuple<INT,INT,INT>;
template <typename INT> using T4 = Tuple<INT,INT,INT,INT>;

constexpr TupleAccessIndex<0> O{};
constexpr TupleAccessIndex<1> I{};
constexpr TupleAccessIndex<2> II{};
constexpr TupleAccessIndex<3> III{};

template <typename...Types> inline Tuple<Types...>::Tuple( Types&&... args ) : tuple<Types...>( move( args )... ) {}
template <typename...Types> template <typename...Args> inline Tuple<Types...>::Tuple( Args&&... args ) : tuple<Types...>( forward<Args>( args )... ) {}

template <typename...Types> template <int n> inline auto& Tuple<Types...>::operator[]( const TupleAccessIndex<n>& i ) noexcept { return get<n>( *this ); }
template <typename...Types> template <int n> inline const auto& Tuple<Types...>::operator[]( const TupleAccessIndex<n>& i ) const noexcept { return get<n>( *this ); }

template <typename RET , template <typename...> typename PAIR , typename INT> T2<RET> cast( const PAIR<INT,INT>& t ) { return {get<0>(t),get<1>(t)}; }
template <typename RET , typename INT> T3<RET> cast( const tuple<INT,INT,INT>& t ) { return {get<0>(t),get<1>(t),get<2>(t)}; }
template <typename RET , typename INT> T4<RET> cast( const tuple<INT,INT,INT,INT>& t ) { return {get<0>(t),get<1>(t),get<2>(t),get<3>(t)}; }

#define DEFINITION_OF_HASH_FOR_TUPLE( PAIR )				\
  template <typename T , typename U> inline size_t hash<PAIR<T,U>>::operator()( const PAIR<T,U>& n ) const { static const size_t seed = ( GetRand( 1e3 , 1e8 ) << 1 ) | 1; static const hash<T> h0; static const hash<U> h1; return ( h0( get<0>( n ) ) * seed ) ^ h1( get<1>( n ) ); } \

template <typename T> DECLARATION_OF_HASH( tuple<T> );
template <typename T , typename U> DECLARATION_OF_HASH( pair<T,U> );
template <typename T , typename U> DECLARATION_OF_HASH( tuple<T,U> );
template <typename T , typename U , typename V> DECLARATION_OF_HASH( tuple<T,U,V> );
template <typename T , typename U , typename V , typename W> DECLARATION_OF_HASH( tuple<T,U,V,W> );

template <typename T> inline size_t hash<tuple<T>>::operator()( const tuple<T>& n ) const { static const hash<T> h; return h(get<0>( n ) ); }
DEFINITION_OF_HASH_FOR_TUPLE( pair );
DEFINITION_OF_HASH_FOR_TUPLE( tuple );
template <typename T , typename U , typename V> inline size_t hash<tuple<T,U,V>>::operator()( const tuple<T,U,V>& n ) const { static const size_t seed = ( GetRand( 1e3 , 1e8 ) << 1 ) | 1; static const hash<pair<T,U>> h01; static const hash<V> h2; return ( h01( { get<0>( n ) , get<1>( n ) } ) * seed ) ^ h2( get<2>( n ) ); }
template <typename T , typename U , typename V , typename W> inline size_t hash<tuple<T,U,V,W>>::operator()( const tuple<T,U,V,W>& n ) const { static const size_t seed = ( GetRand( 1e3 , 1e8 ) << 1 ) | 1; static const hash<pair<T,U>> h01; static const hash<pair<V,W>> h23; return ( h01( { get<0>( n ) , get<1>( n ) } ) * seed ) ^ h23( { get<2>( n ) , get<3>( n ) } ); }

// Vector
#define DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , OPR )			\
  template <typename T> inline V<T>& operator OPR ## = ( V<T>& a0 , const V<T>& a1 ) { assert( a0.size() <= a1.size() ); auto itr0 = a0.begin() , end0 = a0.end(); auto itr1 = a1.begin(); while( itr0 != end0 ){ *( itr0++ ) OPR ## = *( itr1++ ); } return a0; } \
  template <typename T> inline V<T>& operator OPR ## = ( V<T>& a , const T& t ) { for( auto& x : a ){ x OPR## = t; } return a; } \
  template <typename T , typename U> inline V<T> operator OPR( V<T> a , const U& u ) { return move( a OPR ## = u ); } \

#define DEFINITION_OF_INCREMENT_FOR_VECTOR( V , INCR )			\
  template <typename T> inline V<T>& operator INCR( V<T>& a ) { for( auto& i : a ){ INCR i; } return a; } \

#define DEFINITION_OF_SHIFT_FOR_VECTOR( V )			\
  template <typename T> inline V<T>& operator<<=( V<T>& a , T t ) { a.push_back( move( t ) ); return a; } \
  template <typename T , typename U> inline V<T>& operator<<=( V<T>& a , U&& u ) { return a <<= T{ forward<U>( u ) }; } \
  template <typename T> inline T pop( V<T>& a ) { assert( !a.empty() ); T answer = move( a.back() ); a.pop_back(); return answer; } \

#define DEFINITION_OF_ARITHMETICS_FOR_VECTOR( V )			\
  DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , + );                         \
  DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , - );				\
  DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , * );				\
  DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , / );				\
  DEFINITION_OF_ARITHMETIC_FOR_VECTOR( V , % );				\
  DEFINITION_OF_INCREMENT_FOR_VECTOR( V , ++ );				\
  DEFINITION_OF_INCREMENT_FOR_VECTOR( V , -- );				\
  template <typename T> inline V<T> operator-( V<T> a ) { return move( a *= T( -1 ) );} \
  template <typename T> inline V<T> operator*( const T& t , V<T> v ) { return move( v *= t ); } \
  DEFINITION_OF_SHIFT_FOR_VECTOR( V );                                  \

DEFINITION_OF_ARITHMETICS_FOR_VECTOR( vector );
DEFINITION_OF_ARITHMETICS_FOR_VECTOR( list );
DEFINITION_OF_SHIFT_FOR_VECTOR( basic_string );

template <typename V> inline auto Get( V& a ) { return [&]( const int& i = 0 ) -> const decldecay_t( a[0] )& { return a[i]; }; }
template <typename T> inline vector<T> id( const int& size ) { vector<T> answer( size ); for( int i = 0 ; i < size ; i++ ){ answer[i] = i; } return answer; }

template <typename V> inline void Sort( V& a , const bool& reversed = false ) { using T = decldecay_t(a[0]); if( reversed ){ static auto comp = []( const T& t0 , const T& t1 ) { return t1 < t0; }; sort( a.begin() , a.end() , comp ); } else { sort( a.begin() , a.end() ); } }
template <typename V0 , typename V1> inline void Sort( V0& a , V1& b , const bool& reversed = false ) { const int size = a.size(); assert( size == int( b.size() ) ); vector<pair<decldecay_t(a[0]),decldecay_t(b[0])>> v( size ); for( int i = 0 ; i < size ; i++ ){ v[i] = { move( a[i] ) , move( b[i] ) }; } Sort( v , reversed ); for( int i = 0 ; i < size ; i++ ){ a[i] = move( v[i].first ); b[i] = move( v[i].second ); } }
template <typename V> inline pair<vector<int>,vector<int>> IndexSort( const V& a , const bool& reversed = false ) { const int size = a.size(); auto index = id<int>( size ) , ord = index; sort( index.begin() , index.end() , [&]( const int& i , const int& j ) { const pair ti{ a[i] , i } , tj{ a[j] , j }; return reversed ? tj < ti : ti < tj; } ); for( int i = 0 ; i < size ; i++ ){ ord[index[i]] = i; } return { move( index ) , move( ord ) }; }

template <typename V> inline int len( const V& a ) { return a.size(); }

template <typename V> inline void Reverse( V& a ) { const int size = len( a ) , half = size / 2; for( int i = 0 ; i < half ; i++ ){ swap( a[i] , a[size-1-i] ); } }
;
template <typename V> inline V Reversed( V a ) { Reverse( a ); return move( a ); }

template <typename RET , template <typename...> typename V , typename T> inline V<RET> cast( const V<T>& a ) { V<RET> answer{}; for( auto& x : a ){ answer <<= a; } }

#define DEFINITION_OF_COUT_FOR_VECTOR( V ) template <class Traits , typename Arg> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const V<Arg>& arg ) { auto begin = arg.begin() , end = arg.end(); auto itr = begin; while( itr != end ){ ( itr == begin ? os : os << " " ) << *itr; itr++; } return os; }

DEFINITION_OF_COUT_FOR_VECTOR( vector );
DEFINITION_OF_COUT_FOR_VECTOR( list );
DEFINITION_OF_COUT_FOR_VECTOR( set );
DEFINITION_OF_COUT_FOR_VECTOR( unordered_set );
DEFINITION_OF_COUT_FOR_VECTOR( multiset );

inline void VariadicResize( const int& size ) {}
template <typename Arg , typename... ARGS> inline void VariadicResize( const int& size , Arg& arg , ARGS&... args ) { arg.resize( size ); VariadicResize( size , args... ); }

// Map
#define DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , OPR )			\
  template <typename T , typename U> inline MAP<T,U>& operator OPR ## = ( MAP<T,U>& a , const pair<T,U>& v ) { a[v.first] OPR ## = v.second; return a; } \
  template <typename T , typename U> inline MAP<T,U>& operator OPR ## = ( MAP<T,U>& a0 , const MAP<T,U>& a1 ) { for( auto& [t,u] : a1 ){ a0[t] OPR ## = u; } return a0; } \
  template <typename T , typename U , typename ARG> inline MAP<T,U> operator OPR( MAP<T,U> a , const ARG& arg ) { return move( a OPR ## = arg ); } \

#define DEFINITION_OF_ARITHMETICS_FOR_MAP( MAP ) \
  DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , + );	\
  DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , - );	\
  DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , * );	\
  DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , / );	\
  DEFINITION_OF_ARITHMETIC_FOR_MAP( MAP , % );	\

template <typename T , typename U>
using Map = conditional_t<is_constructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,void>>;

DEFINITION_OF_ARITHMETICS_FOR_MAP( map );
DEFINITION_OF_ARITHMETICS_FOR_MAP( unordered_map );

// StdStream
template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg , ARGS&... args ) { return VariadicCin( is >> arg , args... ); }
template <class Traits> inline basic_istream<char,Traits>& VariadicSet( basic_istream<char,Traits>& is , const int& i ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicSet( basic_istream<char,Traits>& is , const int& i , Arg& arg , ARGS&... args ) { return VariadicSet( is >> arg[i] , i , args... ); }

template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; }
template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); }

template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , Arg&& arg ) { return os << forward<Arg>( arg ); }
template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , Arg1&& arg1 , Arg2&& arg2 , ARGS&&... args ) { return VariadicCout( os << forward<Arg1>( arg1 ) << " " , forward<Arg2>( arg2 ) , forward<ARGS>( args )... ); }

template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCoutNonSep( basic_ostream<char,Traits>& os , Arg&& arg ) { return os << forward<Arg>( arg ); }
template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCoutNonSep( basic_ostream<char,Traits>& os , Arg1&& arg1 , Arg2&& arg2 , ARGS&&... args ) { return VariadicCoutNonSep( os << forward<Arg1>( arg1 ) , forward<Arg2>( arg2 ) , forward<ARGS>( args )... ); }

template <class Traits , typename ARRAY> inline basic_ostream<char,Traits>& CoutArray( basic_ostream<char,Traits>& os , const int& i_start , const int& i_ulim , ARRAY&& a ) { for( int i = i_start ; i < i_ulim ; i++ ){ ( i == i_start ? os : ( os << " " ) ) << a[i]; } return os; }

// Arithmetic/Iteration
#define SPECIALSATION_OF_ARITHMETIC_PROGRESSION_SUM( TYPE ) \
  template <> inline TYPE ArithmeticProgressionSum( const TYPE& l , const TYPE& r , const TYPE& d ) { return SpecialisedArithmeticProgressionSum( l , r , d ); } \

template <typename T , typename U , template <typename...> typename V , typename OPR> T LeftConnectiveProd( T t , const V<U>& f , OPR opr ) { for( auto& u : f ){ t = opr( move( t ) , u ); } return move( t ); }
template <typename T , typename U , template <typename...> typename V> inline T Sum( const V<U>& f ) { return LeftConnectiveProd( T{ 0 } , f , []( T t0 , const U& u1 ){ return move( t0 += u1 ); } ); }
template <typename T , typename U , template <typename...> typename V> inline T Prod( const V<U>& f ) { return LeftConnectiveProd( T{ 1 } , f , []( T t0 , const U& u1 ){ return move( t0 *= u1 ); } ); }

template <typename T> inline T& SetMax( T& t ) { return t; }
template <typename T , typename U , typename... Args> inline T& SetMax( T& t0 , const U& u1 , const Args&... args ) { return SetMax( t0 < u1 ? t0 = u1 : t0 , args... ); }
template <typename T> inline T& SetMin( T& t ) { return t; }
template <typename T , typename U , typename... Args> inline T& SetMin( T& t0 , const U& u1 , const Args&... args ) { return SetMin( u1 < t0 ? t0 = u1 : t0 , args... ); }

template <typename T> inline const T& Max( const vector<T>& f ) { return *max_element( f.begin() , f.end() ); }
template <typename T , template <typename...> typename SET> inline const T& Max( const SET<T>& f ) { return *--f.end(); }
template <typename T , typename U , typename...Args> inline T Max( T t0 , const U& t1 , const Args&... args ) { return move( SetMax( t0 , t1 , args... ) ); }
template <typename T> inline const T& Min( const vector<T>& f ) { return *min_element( f.begin() , f.end() ); }
template <typename T , template <typename...> typename SET> inline const T& Min( const SET<T>& f ) { return *f.begin(); }
template <typename T , typename U , typename...Args> inline T Min( T t0 , const U& t1 , const Args&... args ) { return move( SetMin( t0 , t1 , args... ) ); }

template <typename T , typename UINT>
T Power( const T& t , const UINT& exponent , T init )
{

  return exponent > 1 ? Power( t * t , exponent >> 1 , move( exponent & 1 ? init *= t : init ) ) : move( exponent > 0 ? init *= t : ( assert( exponent == 0 ) , init ) );

}

template <typename T> inline T PowerMemorisation( const T& t , const int& exponent ) { assert( exponent >= 0 ); static Map<T,vector<T>> memory{}; auto& answer = memory[t]; if( answer.empty() ){ answer.push_back( 1 ); } while( int( answer.size() ) <= exponent ){ answer.push_back( answer.back() * t ); } return answer[exponent]; }

template <typename INT> inline INT ArithmeticProgressionSum( const INT& l , const INT& r , const INT& d = 1 ) { return ( l + r ) * ( ( r - l ) / d + 1 ) / 2; }
template <typename INT> inline INT SpecialisedArithmeticProgressionSum( const INT& l , const INT& r , const INT& d = 1 ) { assert( l - 1 <= r ); const INT c = ( r - l ) / d; return l - 1 == r ? 0 : ( c & 1 ) == 0 ? ( c + 1 ) * ( l + d * ( c >> 1 ) ) : ( ( c + 1 ) >> 1 ) * ( ( l << 1 ) + d * c ); }
SPECIALSATION_OF_ARITHMETIC_PROGRESSION_SUM( int );
SPECIALSATION_OF_ARITHMETIC_PROGRESSION_SUM( uint );
SPECIALSATION_OF_ARITHMETIC_PROGRESSION_SUM( ll );
SPECIALSATION_OF_ARITHMETIC_PROGRESSION_SUM( ull );
template <typename INT> inline INT ArithmeticProgressionSum( const INT& r ) { return ArithmeticProgressionSum( INT{} , r ); }

template <typename INT> inline INT SquareSum( const INT& r ) { return r * ( r + 1 ) * ( 2 * r + 1 ) / 6; }

template <typename T , typename UINT> inline T GeometricProgressionSum( T rate , UINT exponent_max , const T& init ) { T rate_minus = rate - 1; return rate_minus == 0 ? init * ++exponent_max : ( Power( move( rate ) , move( ++exponent_max ) ) - 1 ) / move( rate_minus ) * init; }

template <typename T , typename UINT>
T GeometricProgressionLinearCombinationSum( vector<T> rate , vector<UINT> exponent_max , const vector<T>& init )
{

  const int size = init.size();
  assert( int( rate.size() ) == size && int( exponent_max.size() ) == size );
  T answer{};

  for( int i = 0 ; i < size ; i++ ){

    answer += GeometricProgressionSum( move( rate[i] ) , move( exponent_max[i] ) , init[i] );

  }

  return answer;

}

// Arithmetic/Sqrt
template <typename INT>
INT RoundDownSqrt( const INT& n )
{

  static_assert( is_same_v<INT,int> || is_same_v<INT,uint> || is_same_v<INT,ll> || is_same_v<INT,ull> );
  assert( n >= 0 );
  
  if( n <= 1 ){

    return n;
    
  }

  constexpr INT r_max = is_same_v<INT,int> ? 46341 : is_same_v<INT,uint> ? 65536 : is_same_v<INT,ll> ? 3037000500 : 4294967296;
  INT l = 1 , r = min( r_max , n );

  while( l < r - 1 ){

    const INT m = ( l + r ) >> 1;
    // m * m <= nか否かを判定。
    ( m <= n / m ? l : r ) = m;

  }

  return l;

}

template <typename INT>
INT RoundUpSqrt( const INT& n )
{
  
  static_assert( is_same_v<INT,int> || is_same_v<INT,uint> || is_same_v<INT,ll> || is_same_v<INT,ull> );
  assert( n >= 0 );

  if( n <= 2 ){

    return n;
    
  }

  constexpr INT r_max = is_same_v<INT,int> ? 46341 : is_same_v<INT,uint> ? 65536 : is_same_v<INT,ll> ? 3037000500 : 4294967296;
  const INT n_minus = n - 1;
  INT l = 1 , r = min( r_max , n );

  while( l + 1 < r ){

    const INT m = ( l + r ) >> 1;
    // m * m < nか否かを判定。
    ( m <= n_minus / m ? l : r ) = m;

  }

  return r;

}

template <typename INT> bool IsSquare( const INT& n ) { const INT r = RoundDownSqrt( n ); return n == r * r; }

/* AAA 常設ライブラリの非圧縮版は以上に挿入する。*/

// デバッグ用
#ifdef DEBUG
  inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }
#endif

// 入力フォーマットチェック用
// 1行中の変数の個数をSEPARATOR区切りで確認
#define GETLINE_COUNT( S , SEPARATOR ) GETLINE( S ); int S ## _count = 0; int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S = 0; int VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S = S.size(); for( int i = 0 ; i < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ; i++ ){ if( S[i] == SEPARATOR ){ S ## _count++; } } if( VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S > 0 ){ S ## _count++; }
#define GETLINE_COUNT_ASSERT( S , SEPARATOR , COUNT ) GETLINE_COUNT( S , SEPARATOR ); assert( S ## _count == COUNT )
// 余計な入力の有無を確認
#if defined( DEBUG ) || defined( REACTIVE )
  #define CHECK_REDUNDANT_INPUT 
#else
  #ifdef USE_GETLINE
    #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; getline( cin , VARIABLE_FOR_CHECK_REDUNDANT_INPUT ); assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )
  #else
    #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; cin >> VARIABLE_FOR_CHECK_REDUNDANT_INPUT; assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )
  #endif
#endif
// MIN <= N <= MAXを満たすNをSから構築
#define STOI( S , N , MIN , MAX ) decldecay_t( MAX ) N = 0; decldecay_t( MAX ) BOUND ## N = max( decldecay_t( MAX )( abs( MIN ) ) , abs( MAX ) ); { bool VARIABLE_FOR_POSITIVITY_FOR_GETLINE = true; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); if( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) == "-" ){ VARIABLE_FOR_POSITIVITY_FOR_GETLINE = false; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); } assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != " " ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; int VARIABLE_FOR_DIGIT_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != " " : false ){ VARIABLE_FOR_DIGIT_FOR_GETLINE = stoi( VARIABLE_FOR_LETTER_FOR_GETLINE ); assert( N < BOUND ## N / 10 ? true : N == BOUND ## N / 10 && VARIABLE_FOR_DIGIT_FOR_GETLINE <= BOUND ## N % 10 ); N = N * 10 + VARIABLE_FOR_DIGIT_FOR_GETLINE; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } if( ! VARIABLE_FOR_POSITIVITY_FOR_GETLINE ){ N *= -1; } if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } ASSERT( N , MIN , MAX ); }
#define STOI_A( S , I , N , A , MIN , MAX ) vector<decldecay_t( MAX )> A( N + I ); FOR( VARIABLE_FOR_STOI_A , 0 , N ){ STOI( S , A ##_VARIABLE_FOR_STOI_A , MIN , MAX ); A[VARIABLE_FOR_STOI_A + I] = A ##_VARIABLE_FOR_STOI_A; }
// Sをstring SEPARATORで区切りTを構築
#define SEPARATE( S , T , SEPARATOR ) string T{}; { assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev = VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S; assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != SEPARATOR ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != SEPARATOR : false ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } T = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev , VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S - VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev ); if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } }

#define INCLUDE_LIBRARY
#include __FILE__
#endif // INCLUDE_LIBRARY
#endif // INCLUDE_MAIN
0