結果
| 問題 | No.878 Range High-Element Query |
| コンテスト | |
| ユーザー |
norioc
|
| 提出日時 | 2026-01-19 19:26:36 |
| 言語 | PyPy3 (7.3.17) |
| 結果 |
AC
|
| 実行時間 | 853 ms / 2,000 ms |
| コード長 | 4,659 bytes |
| 記録 | |
| コンパイル時間 | 274 ms |
| コンパイル使用メモリ | 82,412 KB |
| 実行使用メモリ | 117,608 KB |
| 最終ジャッジ日時 | 2026-01-19 19:26:45 |
| 合計ジャッジ時間 | 8,667 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 18 |
ソースコード
import typing
def _ceil_pow2(n: int) -> int:
x = 0
while (1 << x) < n:
x += 1
return x
class SegTree:
def __init__(self,
op: typing.Callable[[typing.Any, typing.Any], typing.Any],
e: typing.Any,
v: typing.Union[int, typing.List[typing.Any]]) -> None:
self._op = op
self._e = e
if isinstance(v, int):
v = [e] * v
self._n = len(v)
self._log = _ceil_pow2(self._n)
self._size = 1 << self._log
self._d = [e] * (2 * self._size)
for i in range(self._n):
self._d[self._size + i] = v[i]
for i in range(self._size - 1, 0, -1):
self._update(i)
def set(self, p: int, x: typing.Any) -> None:
assert 0 <= p < self._n
p += self._size
self._d[p] = x
for i in range(1, self._log + 1):
self._update(p >> i)
def get(self, p: int) -> typing.Any:
assert 0 <= p < self._n
return self._d[p + self._size]
def prod(self, left: int, right: int) -> typing.Any:
assert 0 <= left <= right <= self._n
sml = self._e
smr = self._e
left += self._size
right += self._size
while left < right:
if left & 1:
sml = self._op(sml, self._d[left])
left += 1
if right & 1:
right -= 1
smr = self._op(self._d[right], smr)
left >>= 1
right >>= 1
return self._op(sml, smr)
def all_prod(self) -> typing.Any:
return self._d[1]
def max_right(self, left: int,
f: typing.Callable[[typing.Any], bool]) -> int:
assert 0 <= left <= self._n
assert f(self._e)
if left == self._n:
return self._n
left += self._size
sm = self._e
first = True
while first or (left & -left) != left:
first = False
while left % 2 == 0:
left >>= 1
if not f(self._op(sm, self._d[left])):
while left < self._size:
left *= 2
if f(self._op(sm, self._d[left])):
sm = self._op(sm, self._d[left])
left += 1
return left - self._size
sm = self._op(sm, self._d[left])
left += 1
return self._n
def min_left(self, right: int,
f: typing.Callable[[typing.Any], bool]) -> int:
assert 0 <= right <= self._n
assert f(self._e)
if right == 0:
return 0
right += self._size
sm = self._e
first = True
while first or (right & -right) != right:
first = False
right -= 1
while right > 1 and right % 2:
right >>= 1
if not f(self._op(self._d[right], sm)):
while right < self._size:
right = 2 * right + 1
if f(self._op(self._d[right], sm)):
sm = self._op(self._d[right], sm)
right -= 1
return right + 1 - self._size
sm = self._op(self._d[right], sm)
return 0
def _update(self, k: int) -> None:
self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1])
N, Q = map(int, input().split())
A = list(map(int, input().split()))
queries = []
for _ in range(Q):
_, l, r = map(int, input().split())
l -= 1
r -= 1
queries.append((l, r))
# 自身より右側で、かつ大きな値のうち最も左側のインデックス
rights = [N] * N # デフォルトの行き先を右端にしておく
segt = SegTree(max, 0, N)
for i in reversed(range(N)):
lo = i
hi = N-1
ind = N
while lo <= hi:
m = (lo + hi) // 2
x = segt.prod(i, m+1)
if x > A[i]:
ind = min(ind, m)
hi = m - 1
else:
lo = m + 1
rights[i] = ind
segt.set(i, A[i])
# for i in reversed(range(N)): # 右端からインデックスを決めていく
# p = segt.max_right(i, lambda x: x <= A[i])
# rights[i] = p
# segt.set(i, A[i])
#
SZ = 32
doubling = [[N] * (N+1) for _ in range(SZ)]
for i in range(N):
doubling[0][i] = rights[i]
for k in range(SZ-1):
for i in range(N):
doubling[k+1][i] = doubling[k][doubling[k][i]]
for l, r in queries:
res = 0
cur = l
for i in reversed(range(SZ)):
t = doubling[i][cur]
if t <= r:
cur = t
res += pow(2, i)
print(res+1)
norioc