結果
| 問題 | No.3437 [Cherry 8th Tune C] Silhouette |
| コンテスト | |
| ユーザー |
zawakasu
|
| 提出日時 | 2026-01-23 23:04:06 |
| 言語 | C++23 (gcc 15.2.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 999 ms / 2,000 ms |
| コード長 | 22,043 bytes |
| 記録 | |
| コンパイル時間 | 2,379 ms |
| コンパイル使用メモリ | 228,724 KB |
| 実行使用メモリ | 7,848 KB |
| 最終ジャッジ日時 | 2026-01-23 23:04:20 |
| 合計ジャッジ時間 | 13,359 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 11 |
ソースコード
#include <iostream>
#include <iomanip>
#include <cassert>
#include <vector>
#include <algorithm>
#include <utility>
#include <numeric>
#include <tuple>
#include <ranges>
#include <random>
// #include "Src/Number/IntegerDivision.hpp"
#include <cstdint>
#include <cstddef>
namespace zawa {
using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;
using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using usize = std::size_t;
} // namespace zawa
#include <cmath>
#include <functional>
#include <type_traits>
namespace zawa {
namespace internal {
template <class T>
T MidPoint(T a, T b) {
if (a > b) std::swap(a, b);
return a + ((b - a) >> 1);
}
template <class T>
T Abs(T a, T b) {
return (a >= b ? a - b : b - a);
}
} // namespace zawa::internal
template <class T, class Function>
T BinarySearch(T ok, T ng, const Function& f) {
static_assert(std::is_integral_v<T>, "T must be integral type");
static_assert(std::is_convertible_v<Function, std::function<bool(T)>>, "f must be function bool(T)");
while (internal::Abs(ok, ng) > 1) {
T mid{ internal::MidPoint(ok, ng) };
(f(mid) ? ok : ng) = mid;
}
return ok;
}
template <class T, class Function>
T BinarySearch(T ok, T ng, const Function& f, u32 upperLimit) {
static_assert(std::is_signed_v<T>, "T must be signed arithmetic type");
static_assert(std::is_convertible_v<Function, std::function<bool(T)>>, "f must be function bool(T)");
for (u32 _{} ; _ < upperLimit ; _++) {
T mid{ (ok + ng) / (T)2 };
(f(mid) ? ok : ng) = mid;
}
return ok;
}
} // namespace zawa
// #include "Src/Sequence/CompressedSequence.hpp"
// #include "Src/Sequence/RunLengthEncoding.hpp"
// #include "Src/Algebra/Group/AdditiveGroup.hpp"
// #include "Src/DataStructure/FenwickTree/FenwickTree.hpp"
// #include "Src/DataStructure/SegmentTree/SegmentTree.hpp"
// #include "Src/DataStructure/DisjointSetUnion/DisjointSetUnion.hpp"
// #include "Src/DataStructure/Heap/BinaryHeap.hpp"
namespace zawa {}
using namespace zawa;
#ifdef _MSC_VER
#include <intrin.h>
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using mint = atcoder::modint998244353;
// #include <array>
// #include <bit>
// #include <bitset>
// #include <climits>
// #include <cmath>
// #include <set>
// #include <unordered_set>
// #include <map>
// #include <unordered_map>
// #include <optional>
// #include <queue>
// #include <stack>
// #include <deque>
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
using namespace std;
template <class T, class U>
ostream& operator<<(ostream& os, const pair<T, U>& p) {
os << '(' << p.first << ',' << p.second << ')';
return os;
}
template <class T>
ostream& operator<<(ostream& os, const vector<T>& v) {
for (int i = 0 ; i < ssize(v) ; i++)
os << v[i] << (i + 1 == ssize(v) ? "" : " ");
return os;
}
using Z = __int128_t;
Z gcd(Z a, Z b) {
return b == 0 ? a : gcd(b, a % b);
}
struct Frac {
Z n = 0, d = 1;
Frac() = default;
Frac(Z v) : n{v}, d{1} {}
Frac(Z num, Z den) : n{num}, d{den} {
assert(d != 0);
Z g = gcd(n, d);
n /= g;
d /= g;
if (n < 0 and d < 0) {
n *= -1;
d *= -1;
}
}
Frac abs() const {
if (n == 0)
return *this;
if (n > 0 and d > 0)
return *this;
if (n < 0 and d < 0)
return *this;
return Frac{-n,d};
}
long double convertDouble() const {
return (long double)n / (long double)d;
}
mint convert() const {
return mint{n%mint::mod()} / mint{d%mint::mod()};
}
};
ostream& operator<<(ostream& os, Z v) {
string s;
bool sign = v < 0;
while (v) {
s += '0' + v % 10;
v /= 10;
}
if (s.empty())
s += '0';
if (sign)
s += '-';
ranges::reverse(s);
os << s;
return os;
}
ostream& operator<<(ostream& os, Frac f) {
os << f.n << '/' << f.d;
return os;
}
bool operator<(const Frac& i, const Frac& j) {
return i.n * j.d < j.n * i.d;
}
Frac operator+(const Frac& i, const Frac& j) {
return Frac{i.n*j.d + j.n*i.d, i.d*j.d};
}
Frac operator-(const Frac& i, const Frac& j) {
return Frac{i.n*j.d - j.n*i.d, i.d*j.d};
}
Frac operator*(const Frac& i, const Frac& j) {
return Frac{i.n*j.n,i.d*j.d};
}
bool operator==(const Frac& i, const Frac& j) {
return i.n * j.d == j.n * i.d;
}
pair<Frac, Frac> f(Z a, Z b, Z c, Z p, Z q, Z r) {
assert(c < r);
Frac t{-r, c - r};
assert(Frac{0} < t);
Frac x = Frac{p} + t * Frac{a - p};
Frac y = Frac{q} + t * Frac{b - q};
return {x, y};
}
mint triangle(pair<Frac, Frac> a, pair<Frac, Frac> b, pair<Frac, Frac> c) {
b.first = b.first - a.first;
b.second = b.second - a.second;
c.first = c.first - a.first;
c.second = c.second - a.second;
// cout << b.first << ' ' << b.second << "b:c" << c.first << ' ' << c.second << endl;
if (Frac{b.first*c.second}.convertDouble() < Frac{b.second*c.first}.convertDouble())
swap(b, c);
// Frac v = Frac{b.first * c.second - b.second * c.first}.abs();
// return mint{v.n%mint::mod()} / mint{v.d%mint::mod()} / mint::raw(2);
return mint{Frac{b.first*c.second}.convert()-Frac{b.second*c.first}.convert()} / mint::raw(2);
}
mint solve() {
long long p[4][3];
for (int i = 0 ; i < 4 ; i++)
for (int j = 0 ; j < 3 ; j++)
cin >> p[i][j];
pair<Frac,Frac> ps[3];
for (int i = 0 ; i < 3 ; i++)
ps[i] = f(p[i][0],p[i][1],p[i][2],p[3][0],p[3][1],p[3][2]);
// cout << ps[0] << ps[1] << ps[2] << endl;
return triangle(ps[0],ps[1],ps[2]);
}
int main() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(0);
cout << fixed << setprecision(20);
#if !defined DEBUG
int T;
cin >> T;
while (T--)
cout << solve().val() << '\n';
#else
mt19937 mt{random_device{}()};
for (int testcase = 0 ; ; ) {
cerr << "----------" << ++testcase << "----------" << endl;
auto a = solve(), b = naive();
if (a != b) {
// print testcase
cerr << "you: " << a << endl;
cout << "correct: " << b << endl;
exit(0);
}
}
#endif
}
zawakasu