結果

問題 No.3437 [Cherry 8th Tune C] Silhouette
コンテスト
ユーザー zawakasu
提出日時 2026-01-23 23:04:06
言語 C++23
(gcc 15.2.0 + boost 1.89.0)
結果
AC  
実行時間 999 ms / 2,000 ms
コード長 22,043 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 2,379 ms
コンパイル使用メモリ 228,724 KB
実行使用メモリ 7,848 KB
最終ジャッジ日時 2026-01-23 23:04:20
合計ジャッジ時間 13,359 ms
ジャッジサーバーID
(参考情報)
judge6 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 11
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#include <iostream>
#include <iomanip>
#include <cassert>
#include <vector>
#include <algorithm>
#include <utility>
#include <numeric>
#include <tuple>
#include <ranges>
#include <random>
// #include "Src/Number/IntegerDivision.hpp"


#include <cstdint>
#include <cstddef>

namespace zawa {

using i16 = std::int16_t;
using i32 = std::int32_t;
using i64 = std::int64_t;
using i128 = __int128_t;

using u8 = std::uint8_t;
using u16 = std::uint16_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;

using usize = std::size_t;

} // namespace zawa

#include <cmath>
#include <functional>
#include <type_traits>

namespace zawa {

namespace internal {

template <class T>
T MidPoint(T a, T b) {
    if (a > b) std::swap(a, b);
    return a + ((b - a) >> 1);
}

template <class T>
T Abs(T a, T b) {
    return (a >= b ? a - b : b - a);
}

} // namespace zawa::internal

template <class T, class Function>
T BinarySearch(T ok, T ng, const Function& f) {
    static_assert(std::is_integral_v<T>, "T must be integral type");
    static_assert(std::is_convertible_v<Function, std::function<bool(T)>>, "f must be function bool(T)");
    while (internal::Abs(ok, ng) > 1) {
        T mid{ internal::MidPoint(ok, ng) };
        (f(mid) ? ok : ng) = mid;
    }
    return ok;
}

template <class T, class Function>
T BinarySearch(T ok, T ng, const Function& f, u32 upperLimit) {
    static_assert(std::is_signed_v<T>, "T must be signed arithmetic type");
    static_assert(std::is_convertible_v<Function, std::function<bool(T)>>, "f must be function bool(T)");
    for (u32 _{} ; _ < upperLimit ; _++) {
        T mid{ (ok + ng) / (T)2 };
        (f(mid) ? ok : ng) = mid;
    }
    return ok;
}

} // namespace zawa
// #include "Src/Sequence/CompressedSequence.hpp"
// #include "Src/Sequence/RunLengthEncoding.hpp"
// #include "Src/Algebra/Group/AdditiveGroup.hpp"
// #include "Src/DataStructure/FenwickTree/FenwickTree.hpp"
// #include "Src/DataStructure/SegmentTree/SegmentTree.hpp"
// #include "Src/DataStructure/DisjointSetUnion/DisjointSetUnion.hpp"
// #include "Src/DataStructure/Heap/BinaryHeap.hpp"
namespace zawa {}
using namespace zawa;




#ifdef _MSC_VER
#include <intrin.h>
#endif





#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned long long y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder






namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder



namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


using mint = atcoder::modint998244353;
// #include <array>
// #include <bit>
// #include <bitset>
// #include <climits>
// #include <cmath>
// #include <set>
// #include <unordered_set>
// #include <map>
// #include <unordered_map>
// #include <optional>
// #include <queue>
// #include <stack>
// #include <deque>
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
using namespace std;
template <class T, class U>
ostream& operator<<(ostream& os, const pair<T, U>& p) {
    os << '(' << p.first << ',' << p.second << ')';
    return os;
}
template <class T>
ostream& operator<<(ostream& os, const vector<T>& v) {
    for (int i = 0 ; i < ssize(v) ; i++)
        os << v[i] << (i + 1 == ssize(v) ? "" : " ");
    return os;
}
using Z = __int128_t;
Z gcd(Z a, Z b) {
    return b == 0 ? a : gcd(b, a % b);
}
struct Frac {
    Z n = 0, d = 1;
    Frac() = default;
    Frac(Z v) : n{v}, d{1} {}
    Frac(Z num, Z den) : n{num}, d{den} {
        assert(d != 0);
        Z g = gcd(n, d);
        n /= g;
        d /= g;
        if (n < 0 and d < 0) {
            n *= -1;
            d *= -1;
        }
    }
    Frac abs() const {
        if (n == 0)
            return *this;
        if (n > 0 and d > 0)
            return *this;
        if (n < 0 and d < 0)
            return *this;
        return Frac{-n,d};
    }
    long double convertDouble() const {
        return (long double)n / (long double)d;
    }
    mint convert() const {
        return mint{n%mint::mod()} / mint{d%mint::mod()};
    }
};
ostream& operator<<(ostream& os, Z v) {
    string s;
    bool sign = v < 0;
    while (v) {
        s += '0' + v % 10;
        v /= 10;
    }
    if (s.empty())
        s += '0';
    if (sign)
        s += '-';
    ranges::reverse(s);
    os << s;
    return os;
}
ostream& operator<<(ostream& os, Frac f) {
    os << f.n << '/' << f.d;
    return os;
}
bool operator<(const Frac& i, const Frac& j) {
    return i.n * j.d < j.n * i.d;
}
Frac operator+(const Frac& i, const Frac& j) {
    return Frac{i.n*j.d + j.n*i.d, i.d*j.d};
}
Frac operator-(const Frac& i, const Frac& j) {
    return Frac{i.n*j.d - j.n*i.d, i.d*j.d};
}
Frac operator*(const Frac& i, const Frac& j) {
    return Frac{i.n*j.n,i.d*j.d};
}
bool operator==(const Frac& i, const Frac& j) {
    return i.n * j.d == j.n * i.d;
}
pair<Frac, Frac> f(Z a, Z b, Z c, Z p, Z q, Z r) {
    assert(c < r);
    Frac t{-r, c - r};
    assert(Frac{0} < t);
    Frac x = Frac{p} + t * Frac{a - p};
    Frac y = Frac{q} + t * Frac{b - q};
    return {x, y};
}
mint triangle(pair<Frac, Frac> a, pair<Frac, Frac> b, pair<Frac, Frac> c) {
    b.first = b.first - a.first;
    b.second = b.second - a.second;
    c.first = c.first - a.first;
    c.second = c.second - a.second;
    // cout << b.first << ' ' << b.second << "b:c" << c.first << ' ' << c.second << endl;
    if (Frac{b.first*c.second}.convertDouble() < Frac{b.second*c.first}.convertDouble())
        swap(b, c);
    // Frac v = Frac{b.first * c.second - b.second * c.first}.abs();
    // return mint{v.n%mint::mod()} / mint{v.d%mint::mod()} / mint::raw(2);
    return mint{Frac{b.first*c.second}.convert()-Frac{b.second*c.first}.convert()} / mint::raw(2);
}
mint solve() {
    long long p[4][3];
    for (int i = 0 ; i < 4 ; i++)
        for (int j = 0 ; j < 3 ; j++)
            cin >> p[i][j];
    pair<Frac,Frac> ps[3];
    for (int i = 0 ; i < 3 ; i++)
        ps[i] = f(p[i][0],p[i][1],p[i][2],p[3][0],p[3][1],p[3][2]);
    // cout << ps[0] << ps[1] << ps[2] << endl;
    return triangle(ps[0],ps[1],ps[2]);
}
int main() {
    cin.tie(0);
    cout.tie(0);
    ios::sync_with_stdio(0);
    cout << fixed << setprecision(20);
#if !defined DEBUG
    int T;
    cin >> T;
    while (T--)
        cout << solve().val() << '\n';
#else
    mt19937 mt{random_device{}()};
    for (int testcase = 0 ; ; ) {
        cerr << "----------" << ++testcase << "----------" << endl;
        
        auto a = solve(), b = naive();
        if (a != b) {
            // print testcase

            cerr << "you: " << a << endl;
            cout << "correct: " << b << endl;
            exit(0);
        }
    }
#endif
}
0