結果

問題 No.3442 Good Vertex Connectivity
コンテスト
ユーザー noya2
提出日時 2026-02-06 04:26:48
言語 C++23
(gcc 15.2.0 + boost 1.89.0)
結果
AC  
実行時間 260 ms / 3,000 ms
コード長 19,006 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 3,813 ms
コンパイル使用メモリ 365,384 KB
実行使用メモリ 36,516 KB
最終ジャッジ日時 2026-02-06 20:58:56
合計ジャッジ時間 18,147 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 69
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#line 1 "c.cpp"
#include<bits/stdc++.h>
#include<atcoder/segtree>
using namespace std;

#line 2 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp"

#line 6 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp"
#include <ranges>
#line 9 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp"

#line 2 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp"

#line 7 "/Users/noya2/Desktop/Noya2_library/data_structure/csr.hpp"

namespace noya2::internal {

template<class E>
struct csr {
    csr () {}
    csr (int _n) : n(_n) {}
    csr (int _n, int m) : n(_n){
        start.reserve(m);
        elist.reserve(m);
    }
    // ACL style constructor (do not have to call build)
    csr (int _n, const std::vector<std::pair<int,E>> &idx_elem) : n(_n), start(_n + 2), elist(idx_elem.size()) {
        for (auto &[i, e] : idx_elem){
            start[i + 2]++;
        }
        for (int i = 1; i < n; i++){
            start[i + 2] += start[i + 1];
        }
        for (auto &[i, e] : idx_elem){
            elist[start[i + 1]++] = e;
        }
        prepared = true;
    }
    int add(int idx, E elem){
        int eid = start.size();
        start.emplace_back(idx);
        elist.emplace_back(elem);
        return eid;
    }
    void build(){
        if (prepared) return ;
        int m = start.size();
        std::vector<E> nelist(m);
        std::vector<int> nstart(n + 2, 0);
        for (int i = 0; i < m; i++){
            nstart[start[i] + 2]++;
        }
        for (int i = 1; i < n; i++){
            nstart[i + 2] += nstart[i + 1];
        }
        for (int i = 0; i < m; i++){
            nelist[nstart[start[i] + 1]++] = elist[i];
        }
        swap(elist,nelist);
        swap(start,nstart);
        prepared = true;
    }
    const auto operator[](int idx) const {
        return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]);
    }
    auto operator[](int idx){
        return std::ranges::subrange(elist.begin()+start[idx],elist.begin()+start[idx+1]);
    }
    const auto operator()(int idx, int l, int r) const {
        return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r);
    }
    auto operator()(int idx, int l, int r){
        return std::ranges::subrange(elist.begin()+start[idx]+l,elist.begin()+start[idx]+r);
    }
    size_t size() const {
        return n;
    }
    int n;
    std::vector<int> start;
    std::vector<E> elist;
    bool prepared = false;
};

} // namespace noya2::internal
#line 11 "/Users/noya2/Desktop/Noya2_library/tree/heavy_light_decomposition.hpp"

namespace noya2 {

struct hld_tree {
    int n, root;
    bool build_ok = false;
    std::vector<int> down, nxt, sub, tour;
	noya2::internal::csr<int> childs;

    // default constructor (nop)
    hld_tree () {}

    // tree with _n node
    // after construct, call input_edges / input_parents / add_edge _n - 1 times
    hld_tree (int _n, int _root = 0) : n(_n), root(_root), down(n), nxt(n), sub(n, 1), tour(n) {
        if (n == 1){
            nxt[0] = -1;
            down[0] = -1;
            build_from_parents();
        }
    }

    // par[i] < i, par[0] == -1
    hld_tree (const std::vector<int> &par) : n(par.size()), root(0), down(n, -1), nxt(par), sub(n, 1), tour(n){
        build_from_parents();
    }

    // par[i] < i, par[0] == -1
    hld_tree (std::vector<int> &&par) : n(par.size()), root(0), down(n, -1), sub(n, 1), tour(n) {
        nxt.swap(par);
        build_from_parents();
    }

    // distinct unweighted undirected n - 1 edges of tree 
    hld_tree (const std::vector<std::pair<int, int>> &es, int _root = 0) : n(es.size() + 1), root(_root), down(n), nxt(n), sub(n, 1), tour(n) {
        for (auto &[u, v] : es){
            down[u]++;
            down[v]++;
            nxt[u] ^= v;
            nxt[v] ^= u;
        }
        build_from_edges();
    }

    // input parents from cin
    template<int indexed = 1>
    void input_parents(){
        using std::cin;
        nxt[0] = -1;
        down[0] = -1;
        for (int u = 1; u < n; u++){
            cin >> nxt[u];
            nxt[u] -= indexed;
            down[u] = -1;
        }
        build_from_parents();
    }

    // input n - 1 edges from cin
    template<int indexed = 1>
    void input_edges(){
        if (n == 1) return ;
        using std::cin;
        for (int i = 1; i < n; i++){
            int u, v; cin >> u >> v;
            u -= indexed;
            v -= indexed;
            down[u]++;
            down[v]++;
            nxt[u] ^= v;
            nxt[v] ^= u;
        }
        build_from_edges();
    }

    void add_edge(int u, int v){
        down[u]++;
        down[v]++;
        nxt[u] ^= v;
        nxt[v] ^= u;
        // use tour[0] as counter
        if (++tour[0] == n - 1){
            build_from_edges();
        }
    }

    size_t size() const {
        return n;
    }

    // top vertex of heavy path which contains v
    int leader(int v) const {
        return nxt[v] < 0 ? v : nxt[v];
    }

    // level ancestor
    // ret is ancestor of v, dist(ret, v) == d
    // if d > depth(v), return -1
    int la(int v, int d) const {
        while (v != -1){
            int u = leader(v);
            if (down[v] - d >= down[u]){
                v = tour[down[v] - d];
                break;
            }
            d -= down[v] - down[u] + 1;
            v = (u == root ? -1 : ~nxt[u]);
        }
        return v;
    }

    // lowest common ancestor of u and v
    int lca(int u, int v) const {
        int du = down[u], dv = down[v];
        if (du > dv){
            std::swap(du, dv);
            std::swap(u, v);
        }
        if (dv < du + sub[u]){
            return u;
        }
        while (du < dv){
            v = ~nxt[leader(v)];
            dv = down[v];
        }
        return v;
    }

    // distance from u to v
    int dist(int u, int v) const {
        int _dist = 0;
        while (leader(u) != leader(v)){
            if (down[u] > down[v]) std::swap(u, v);
            _dist += down[v] - down[leader(v)] + 1;
            v = ~nxt[leader(v)];
        }
        _dist += std::abs(down[u] - down[v]);
        return _dist;
    }

    // d times move from to its neighbor (direction of to)
    // if d > dist(from, to), return -1
    int jump(int from, int to, int d) const {
        int _from = from, _to = to;
        int dist_from_lca = 0, dist_to_lca = 0;
        while (leader(_from) != leader(_to)){
            if (down[_from] > down[_to]){
                dist_from_lca += down[_from] - down[leader(_from)] + 1;
                _from = ~nxt[leader(_from)];
            }
            else {
                dist_to_lca += down[_to] - down[leader(_to)] + 1;
                _to = ~nxt[leader(_to)];
            }
        }
        if (down[_from] > down[_to]){
            dist_from_lca += down[_from] - down[_to];
        }
        else {
            dist_to_lca += down[_to] - down[_from];
        }
        if (d <= dist_from_lca){
            return la(from, d);
        }
        d -= dist_from_lca;
        if (d <= dist_to_lca){
            return la(to, dist_to_lca - d);
        }
        return -1;
    }

    // parent of v (if v is root, return -1)
    int parent(int v) const {
        if (v == root) return -1;
        return (nxt[v] < 0 ? ~nxt[v] : tour[down[v] - 1]);
    }

    // visiting time in euler tour
    // usage : seg.set(index(v), X[v])
    int index(int vertex) const {
        return down[vertex];
    }
    // usage : seg.set(index_edge(e.u, e.v), e.val)
    int index(int vertex1, int vertex2) const {
        return std::max(down[vertex1], down[vertex2]);
    }

    // subtree size of v
    int subtree_size(int v) const {
        return sub[v];
    }

    // prod in subtree v : seg.prod(subtree_l(v), subtree_r(v))
    int subtree_l(int v) const {
        return down[v];
    }
    int subtree_r(int v) const {
        return down[v] + sub[v];
    }

    // v is in subtree r
    bool is_in_subtree(int r, int v) const {
        return subtree_l(r) <= subtree_l(v) && subtree_r(v) <= subtree_r(r);
    }
    
    // distance table from s
    std::vector<int> dist_table(int s) const {
        std::vector<int> table(n, -1);
        table[s] = 0;
        while (s != root){
            table[parent(s)] = table[s] + 1;
            s = parent(s);
        }
        for (int v : tour){
            if (table[v] == -1){
                table[v] = table[parent(v)] + 1;
            }
        }
        return table;
    }

    // dist, v1, v2
    std::tuple<int, int, int> diameter() const {
        std::vector<int> dep = dist_table(root);
        int v1 = std::ranges::max_element(dep) - dep.begin();
        std::vector<int> fromv1 = dist_table(v1);
        int v2 = std::ranges::max_element(fromv1) - fromv1.begin();
        return {fromv1[v2], v1, v2};
    }

    // vertex array {from, ..., to}
    std::vector<int> path(int from, int to) const {
        int d = dist(from, to);
        std::vector<int> _path(d + 1);
        int front = 0, back = d;
        while (from != to){
            if (down[from] > down[to]){
                _path[front++] = from;
                from = parent(from);
            }
            else {
                _path[back--] = to;
                to = parent(to);
            }
        }
        _path[front] = from;
        return _path;
    }

    // path decomposition and query (vertex weighted)
    // if l < r, decsending order tour[l, r)
    // if l > r, acsending order tour(l, r]
    template<bool vertex = true>
    void path_query(int u, int v, auto f) const {
        while (leader(u) != leader(v)){
            if (down[u] < down[v]){
                f(down[leader(v)], down[v] + 1);
                v = ~nxt[leader(v)];
            }
            else {
                f(down[u] + 1, down[leader(u)]);
                u = ~nxt[leader(u)];
            }
        }
        if constexpr (vertex){
            if (down[u] < down[v]){
                f(down[u], down[v] + 1);
            }
            else {
                f(down[u] + 1, down[v]);
            }
        }
        else {
            if (down[u] != down[v]){
                f(down[u] + 1, down[v] + 1);
            }
        }
    }

    // {parent, mapping} : cptree i is correspond to tree mapping[i]. parent[i] is parent of i in cptree.
    // parent[i] < i, parent[0] == -1
	std::pair<std::vector<int>, std::vector<int>> compressed_tree(std::vector<int> vs) const {
        if (vs.empty()){
            return {{},{}};
        }
        auto comp = [&](int l, int r){
            return down[l] < down[r];
        };
		std::ranges::sort(vs, comp);
		int sz = vs.size(); vs.reserve(2*sz);
        for (int i = 0; i < sz-1; i++){
            vs.emplace_back(lca(vs[i], vs[i+1]));
        }
        std::sort(vs.begin() + sz, vs.end(), comp);
        std::ranges::inplace_merge(vs, vs.begin() + sz, comp);
        auto del = std::ranges::unique(vs);
        vs.erase(del.begin(), del.end());
        sz = vs.size();
        std::stack<int> st;
        std::vector<int> par(sz);
        par[0] = -1;
        st.push(0);
        for (int i = 1; i < sz; i++){
            while (!is_in_subtree(vs[st.top()], vs[i])) st.pop();
            par[i] = st.top();
            st.push(i);
        }
        return {par, vs};
	}

//*  CSR

	// build csr for using operator()
    // g(v).front() : heady child of v
	void build_csr(){
		childs = noya2::internal::csr<int>(n, n - 1);
        for (int v = 0; v < n; v++){
            if (v == root) continue;
            if (leader(v) != v){
                childs.add(parent(v),v);
            }
        }
		for (int v = 0; v < n; v++){
			if (v == root) continue;
            if (leader(v) == v){
                childs.add(parent(v),v);
            }
		}
		childs.build();
	}
	const auto operator()(int v) const {
		return childs[v];
	}
	auto operator()(int v){
		return childs[v];
	}
//*/

    // hld_tree g;
    // euler tour order : `for (int v : g)`
    // with range_adaptor : `for (int v : g | std::views::reverse)`
    // bottom-up DP : `for (int v : g | std::views::drop(1) | std::views::reverse){ update dp[g.parent(v)] by dp[v] }`
    auto begin() const {
        return tour.begin();
    }
    auto end() const {
        return tour.end();
    }

  private:
    // nxt[v] : parent of v, nxt[0] == -1
    void build_from_parents(){
        if (n == 1){
            down[0] = 0;
            nxt[0] = -1;
            sub[0] = 1;
            tour[0] = 0;
            return ;
        }
        for (int u = n - 1; u >= 1; u--){
            int v = nxt[u];
            sub[v] += sub[u];
            down[v] = std::max(down[v], sub[u]);
        }
        for (int u = n - 1; u >= 1; u--){
            int v = nxt[u];
            if (down[v] == sub[u]){
                sub[u] = ~sub[u];
                down[v] = ~down[v];
            }
        }

        sub[0] = ~down[0] + 1;
        down[0] = 0;
        for (int u = 1; u < n; u++){
            int v = nxt[u];
            int nsub = ~down[u] + 1;
            if (sub[u] < 0){
                down[u] = down[v] + 1;
                nxt[u] = (nxt[v] < 0 ? v : nxt[v]);
            }
            else {
                down[u] = down[v] + sub[v];
                sub[v] += sub[u];
                nxt[u] = ~v;
            }
            sub[u] = nsub;
        }

        for (int u = 0; u < n; u++){
            tour[down[u]] = u;
        }

        build_ok = true;
    }

    // down[v] : degree of v
    // nxt[v] : xor prod of neighbor of v
    void build_from_edges(){
        // use tour as queue
        int back = 0;
        for (int u = 0; u < n; u++){
            if (u != root && down[u] == 1){
                tour[back++] = u;
            }
        }
        for (int front = 0; front < n - 1; front++){
            int u = tour[front];
            down[u] = -1;
            int v = nxt[u]; // parent of v
            nxt[v] ^= u;
            if (--down[v] == 1 && v != root){
                tour[back++] = v;
            }
        }
        // check : now, tour is reverse of topological order

        tour.pop_back();

        // check : now, down[*] <= 1
        for (int u : tour){
            int v = nxt[u];
            // subtree size (initialized (1,1,...,1))
            sub[v] += sub[u];
            // heaviest subtree of its child
            down[v] = std::max(down[v], sub[u]);
        }
        for (int u : tour){
            int v = nxt[u];
            // whether u is not the top of heavy path
            if (down[v] == sub[u]){
                sub[u] = ~sub[u];
                down[v] = ~down[v];
            }
        }

        // after appearing v as u (or v == root), 
        // down[v] is the visiting time of euler tour
        // nxt[v] is the lowest vertex of heavy path which contains v
        //   (if v itself, nxt[v] is ~(parent of v))
        // sub[v] + down[v] is the light child's starting time of euler tour
        // note : heavy child's visiting time of euler tour is (the time of its parent) + 1
        sub[root] = ~down[root] + 1;
        down[root] = 0;
        nxt[root] = -1;
        for (int u : tour | std::views::reverse){
            int v = nxt[u];
            int nsub = ~down[u] + 1;
            // heavy child
            if (sub[u] < 0){
                down[u] = down[v] + 1;
                nxt[u] = (nxt[v] < 0 ? v : nxt[v]);
            }
            // light child
            else {
                down[u] = down[v] + sub[v];
                sub[v] += sub[u];
                nxt[u] = ~v;
            }
            sub[u] = nsub;
        }

        // tour is inverse permutation of down
        tour.push_back(0);
        for (int u = 0; u < n; u++){
            tour[down[u]] = u;
        }

        build_ok = true;
    }
};

} // namespace noya2
#line 6 "c.cpp"

int input(){
    int x = 0;
    char c;
    while ((c = getchar_unlocked() ^ 48) < 10){
        x = x * 10 + c;
    }
    return x;
}

struct S {
    int ldep, lmi, mmi, rdep, rmi, ans;
};

S op(S a, S b){
    if (a.ans == -1) return b;
    if (b.ans == -1) return a;
    S c;
    if (a.ans == -2){
        if (b.ans == -2){
            c = a;
            if (c.lmi > b.lmi){
                c.lmi = b.lmi;
            }
        }
        else {
            c = b;
            if (c.lmi > a.lmi){
                c.lmi = a.lmi;
            }
        }
    }
    else {
        if (b.ans == -2){
            c = a;
            if (c.rmi > b.lmi){
                c.rmi = b.lmi;
            }
        }
        else {
            c.ldep = a.ldep;
            c.lmi = a.lmi;
            c.mmi = min({a.mmi, b.mmi, a.rmi, b.lmi});
            c.rdep = b.rdep;
            c.rmi = b.rmi;
            c.ans = a.ans + b.ans + a.rdep + b.ldep - 2 * min(a.rmi, b.lmi);
        }
    }
    return c;
}

S e(){
    return {0,0,0,0,0,-1};
}

const int iinf = 1e9;

int main(){
    cin.tie(0)->sync_with_stdio(0);
    int n = input();
    noya2::hld_tree g(n);
    for (int i = 1; i < n; i++){
        int u = input(); u--;
        int v = input(); v--;
        g.add_edge(u, v);
    }
    auto dep = g.dist_table(0);
    vector<bool> col(n);
    auto single = [&](int v) -> S {
        if (col[v]){
            return S{dep[v],dep[v]-1,iinf,dep[v],dep[v],0};
        }
        else {
            return S{-1,dep[v]-1,iinf,-1,dep[v],-2};
        }
    };
    atcoder::segtree<S,op,e> segoff([&]{
        vector<S> ret(n);
        for (int v = 0; v < n; v++){
            ret[g.index(v)] = single(v);
        }
        return ret;
    }());
    for (int i = 0; i < n; i++){
        col[i] = input();
    }
    atcoder::segtree<S,op,e> seg([&]{
        vector<S> ret(n);
        for (int v = 0; v < n; v++){
            ret[g.index(v)] = single(v);
        }
        return ret;
    }());
    auto eval = [&](S a) -> int {
        if (a.ans < 0) return 0;
        int ans = a.ans; 
        if (a.mmi != iinf){
            ans += a.ldep + a.rdep - 2 * a.mmi;
        }
        else {
            assert(ans == 0);
        }
        assert(ans % 2 == 0);
        ans /= 2;
        return ans + 1;
    };
    auto query = [&](int x, int y){
        if (!g.is_in_subtree(y, x)){
            S prd = seg.prod(g.subtree_l(y), g.subtree_r(y));
            return eval(prd);
        }
        if (x == y){
            S prd = seg.all_prod();
            return eval(prd);
        }
        int z = g.jump(y, x, 1);
        int l = g.subtree_l(z), r = g.subtree_r(z);
        S prd = op(seg.prod(0, l), op(segoff.prod(l, r), seg.prod(r, n)));
        return eval(prd);
    };
    int q = input();
    while (q--){
        int t = input();
        if (t == 1){
            int v = input(); v--;
            col[v] = !col[v];
            seg.set(g.index(v), single(v));
        }
        else {
            int x = input(); x--;
            int y = input(); y--;
            int ans = query(x, y);
            cout << ans << '\n';
        }
    }
}
0