結果

問題 No.3442 Good Vertex Connectivity
コンテスト
ユーザー hitonanode
提出日時 2026-02-06 22:05:15
言語 C++23
(gcc 15.2.0 + boost 1.89.0)
結果
AC  
実行時間 915 ms / 3,000 ms
コード長 22,787 bytes
記録
記録タグの例:
初AC ショートコード 純ショートコード 純主流ショートコード 最速実行時間
コンパイル時間 4,421 ms
コンパイル使用メモリ 317,552 KB
実行使用メモリ 60,040 KB
最終ジャッジ日時 2026-02-06 22:06:10
合計ジャッジ時間 48,518 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 69
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <optional>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }
template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }
template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }
template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);

template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }
template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_CYAN = "\033[1;36m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl
#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr)
#else
#define dbg(x) ((void)0)
#define dbgif(cond, x) ((void)0)
#endif

#include <utility>
#include <vector>

// lowest common ancestor (LCA) for undirected weighted tree
template <typename T> struct UndirectedWeightedTree {
    int INVALID = -1;
    int V, lgV;
    int E;
    int root;
    std::vector<std::vector<std::pair<int, int>>> adj; // (nxt_vertex, edge_id)
    // vector<pint> edge; // edges[edge_id] = (vertex_id, vertex_id)
    std::vector<T> weight;     // w[edge_id]
    std::vector<int> par;      // parent_vertex_id[vertex_id]
    std::vector<int> depth;    // depth_from_root[vertex_id]
    std::vector<T> acc_weight; // w_sum_from_root[vertex_id]

    void _fix_root_dfs(int now, int prv, int prv_edge_id) {
        par[now] = prv;
        if (prv_edge_id != INVALID) acc_weight[now] = acc_weight[prv] + weight[prv_edge_id];
        for (auto nxt : adj[now])
            if (nxt.first != prv) {
                depth[nxt.first] = depth[now] + 1;
                _fix_root_dfs(nxt.first, now, nxt.second);
            }
    }

    UndirectedWeightedTree() = default;
    UndirectedWeightedTree(int N) : V(N), E(0), adj(N) {
        lgV = 1;
        while (1 << lgV < V) lgV++;
    }

    void add_edge(int u, int v, T w) {
        adj[u].emplace_back(v, E);
        adj[v].emplace_back(u, E);
        // edge.emplace_back(u, v);
        weight.emplace_back(w);
        E++;
    }

    std::vector<std::vector<int>> doubling;
    void _doubling_precalc() {
        doubling.assign(lgV, std::vector<int>(V));
        doubling[0] = par;
        for (int d = 0; d < lgV - 1; d++)
            for (int i = 0; i < V; i++) {
                if (doubling[d][i] == INVALID)
                    doubling[d + 1][i] = INVALID;
                else
                    doubling[d + 1][i] = doubling[d][doubling[d][i]];
            }
    }

    void fix_root(int r) {
        root = r;
        par.resize(V);
        depth.resize(V);
        depth[r] = 0;
        acc_weight.resize(V);
        acc_weight[r] = 0;
        _fix_root_dfs(root, INVALID, INVALID);
        _doubling_precalc();
    }

    int kth_parent(int x, int k) const {
        if (depth[x] < k) return INVALID;
        for (int d = 0; d < lgV; d++) {
            if (x == INVALID) return INVALID;
            if (k & (1 << d)) x = doubling[d][x];
        }
        return x;
    }

    int lowest_common_ancestor(int u, int v) const {
        if (depth[u] > depth[v]) std::swap(u, v);

        v = kth_parent(v, depth[v] - depth[u]);
        if (u == v) return u;
        for (int d = lgV - 1; d >= 0; d--) {
            if (doubling[d][u] != doubling[d][v]) u = doubling[d][u], v = doubling[d][v];
        }
        return par[u];
    }

    T path_length(int u, int v) const {
        // Not distance, but the sum of weights
        int r = lowest_common_ancestor(u, v);
        return (acc_weight[u] - acc_weight[r]) + (acc_weight[v] - acc_weight[r]);
    }

    int s_to_t_by_k_steps(int s, int t, int k) const {
        int l = lowest_common_ancestor(s, t);
        int dsl = depth[s] - depth[l], dtl = depth[t] - depth[l];
        if (k > dsl + dtl) {
            return INVALID;
        } else if (k < dsl) {
            return kth_parent(s, k);
        } else if (k == dsl) {
            return l;
        } else {
            return kth_parent(t, dsl + dtl - k);
        }
    }
};


#include <cassert>
#include <cstdint>
#include <vector>

// Sorted set of integers [0, n)
// Space complexity: (64 / 63) n + O(log n) bit
class fast_set {
    static constexpr int B = 64;

    int n;
    int cnt;
    std::vector<std::vector<uint64_t>> _d;

    static int bsf(uint64_t x) { return __builtin_ctzll(x); }
    static int bsr(uint64_t x) { return 63 - __builtin_clzll(x); }

public:
    // 0 以上 n_ 未満の整数が入れられる sorted set を作成
    fast_set(int n_) : n(n_), cnt(0) {
        do { n_ = (n_ + B - 1) / B, _d.push_back(std::vector<uint64_t>(n_)); } while (n_ > 1);
    }

    bool contains(int i) const {
        assert(0 <= i and i < n);
        return (_d.front().at(i / B) >> (i % B)) & 1;
    }

    void insert(int i) {
        assert(0 <= i and i < n);
        if (contains(i)) return;
        ++cnt;
        for (auto &vec : _d) {
            bool f = vec.at(i / B);
            vec.at(i / B) |= 1ULL << (i % B), i /= B;
            if (f) break;
        }
    }

    void erase(int i) {
        assert(0 <= i and i < n);
        if (!contains(i)) return;
        --cnt;
        for (auto &vec : _d) {
            vec.at(i / B) &= ~(1ULL << (i % B)), i /= B;
            if (vec.at(i)) break;
        }
    }

    // i 以上の最小要素 なければ default_val
    int next(int i, const int default_val) const {
        assert(0 <= i and i <= n);

        for (auto itr = _d.cbegin(); itr != _d.cend(); ++itr, i = i / B + 1) {
            if (i / B >= int(itr->size())) break;

            if (auto d = itr->at(i / B) >> (i % B); d) {
                i += bsf(d);
                while (itr != _d.cbegin()) i = i * B + bsf((--itr)->at(i));
                return i;
            }
        }

        return default_val;
    }
    int next(const int i) const { return next(i, n); }

    // i 以下の最小要素 なければ default_val
    int prev(int i, int default_val = -1) const {
        assert(-1 <= i and i < n);

        for (auto itr = _d.cbegin(); itr != _d.cend() and i >= 0; ++itr, i = i / B - 1) {
            if (auto d = itr->at(i / B) << (B - 1 - i % B); d) {
                i += bsr(d) - (B - 1);
                while (itr != _d.cbegin()) i = i * B + bsr((--itr)->at(i));
                return i;
            }
        }

        return default_val;
    }

    // return minimum element (if exists) or `n` (empty)
    int min() const { return next(0); }
    // return maximum element (if exists) or `-1` (empty)
    int max() const { return prev(n - 1); }
    int size() const { return cnt; }
    bool empty() const { return cnt == 0; }

    void clear() {
        if (!cnt) return;
        cnt = 0;
        auto rec = [&](auto &&self, int d, int x) -> void {
            if (d) {
                for (auto m = _d.at(d).at(x); m;) {
                    int i = bsf(m);
                    m -= 1ULL << i, self(self, d - 1, x * B + i);
                }
            }
            _d.at(d).at(x) = 0;
        };
        rec(rec, _d.size() - 1, 0);
    }
};


#include <algorithm>
#include <cassert>
#include <vector>

// Range Minimum Query for static sequence by sparse table
// Complexity: (N \log N)$ for precalculation, (1)$ per query
template <typename T> struct StaticRMQ {
    inline T func(const T &l, const T &r) const noexcept { return std::min<T>(l, r); }
    int N, lgN;
    T defaultT;
    std::vector<std::vector<T>> data;
    std::vector<int> lgx_table;
    StaticRMQ() = default;
    StaticRMQ(const std::vector<T> &sequence, T defaultT)
        : N(sequence.size()), defaultT(defaultT) {
        lgx_table.resize(N + 1);
        for (int i = 2; i < N + 1; i++) lgx_table[i] = lgx_table[i >> 1] + 1;
        lgN = lgx_table[N] + 1;
        data.assign(lgN, std::vector<T>(N, defaultT));
        data[0] = sequence;
        for (int d = 1; d < lgN; d++) {
            for (int i = 0; i + (1 << d) <= N; i++) {
                data[d][i] = func(data[d - 1][i], data[d - 1][i + (1 << (d - 1))]);
            }
        }
    }
    T get(int l, int r) const { // [l, r), 0-indexed
        assert(l >= 0 and r <= N);
        if (l >= r) return defaultT;
        int d = lgx_table[r - l];
        return func(data[d][l], data[d][r - (1 << d)]);
    }
};


#include <algorithm>
#include <cassert>
#include <utility>
#include <vector>

struct TreeLCA {
    const int N;
    std::vector<std::vector<int>> to;
    int root;
    TreeLCA(int V = 0) : N(V), to(V), root(-1) {}

    void add_edge(int u, int v) {
        assert(0 <= u and u < N);
        assert(0 <= v and v < N);
        assert(u != v);
        to[u].push_back(v);
        to[v].push_back(u);
    }

    using P = std::pair<int, int>;
    std::vector<int> subtree_begin;
    std::vector<P> vis_order;
    std::vector<int> depth;
    void _build_dfs(int now, int prv, int dnow) {
        subtree_begin[now] = vis_order.size();
        vis_order.emplace_back(dnow, now);
        depth[now] = dnow;
        for (auto &&nxt : to[now]) {
            if (nxt != prv) {
                _build_dfs(nxt, now, dnow + 1);
                vis_order.emplace_back(dnow, now);
            }
        }
    }

    StaticRMQ<P> rmq;
    void build(int root_) {
        assert(root_ >= 0 and root_ < N);
        if (root == root_) return;
        root = root_;
        subtree_begin.assign(N, 0);
        vis_order.clear();
        vis_order.reserve(N * 2);
        depth.assign(N, 0);
        _build_dfs(root, -1, 0);
        rmq = {vis_order, P{N, -1}};
    }

    bool built() const noexcept { return root >= 0; }

    int lca(int u, int v) const {
        assert(0 <= u and u < N);
        assert(0 <= v and v < N);
        assert(built());

        int a = subtree_begin[u], b = subtree_begin[v];
        if (a > b) std::swap(a, b);
        return rmq.get(a, b + 1).second;
    };

    int path_length(int u, int v) const { return depth[u] + depth[v] - depth[lca(u, v)] * 2; }
};


#include <cassert>
#include <utility>
#include <vector>

// Euler tour
// https://maspypy.com/euler-tour-%E3%81%AE%E3%81%8A%E5%8B%89%E5%BC%B7
struct euler_tour {
    int n;
    int root;

    std::vector<std::pair<int, int>> edges; // (parent, child)

    // - 頂点 v に関する部分木に含まれる辺は, [begins[v], ends[v]) に 2 回ずつ登場
    // - [begins[u], begins[v]) (begins[u] <= begins[v]) の半開区間に u-v パスを構成する辺が奇数回登場
    std::vector<int> begins;
    std::vector<int> ends;

    vector<int> visord;
    vector<int> visord_inv;
    vector<int> visord_inv_right;

    std::vector<int> par_eid;
    std::vector<std::pair<int, bool>> tour; // (edge_id, flg) flg=true: down, false: up

    void _build_dfs(int now, int prv_eid, const std::vector<std::vector<std::pair<int, int>>> &to) {
        tour.emplace_back(prv_eid, true);
        begins[now] = tour.size();
        visord_inv.at(now) = visord.size();
        visord.push_back(now);

        for (auto [nxt, eid] : to[now]) {
            if (eid == prv_eid) continue;
            par_eid[nxt] = eid;
            if (edges[eid].first == nxt) std::swap(edges[eid].first, edges[eid].second);
            _build_dfs(nxt, eid, to);
        }

        ends[now] = tour.size();
        visord_inv_right.at(now) = visord.size();
        tour.emplace_back(prv_eid, false);
    }

    euler_tour() = default;

    euler_tour(int n, const std::vector<std::pair<int, int>> &edges_, int root)
        : n(n), root(root), edges(edges_), begins(n, -1), ends(n, -1), visord_inv(n, -1),
          visord_inv_right(n, -1), par_eid(n, -1) {
        std::vector<std::vector<std::pair<int, int>>> to(n);
        for (int eid = 0; eid < (int)edges.size(); ++eid) {
            auto [u, v] = edges[eid];
            assert(u != v);
            to.at(u).emplace_back(v, eid);
            to.at(v).emplace_back(u, eid);
        }

        _build_dfs(root, -1, to);
    }

    // 頂点 v の部分木の頂点数
    int subtree_size(int v) const { return (ends.at(v) - begins.at(v)) / 2 + 1; }

    int par(int v) const {
        int eid = par_eid.at(v);
        return eid == -1 ? -1 : edges[eid].first;
    }

    int tour_child(int idx) const {
        int eid = tour.at(idx).first;
        return eid < 0 ? root : edges[eid].second;
    }
};


#include <algorithm>
#include <vector>

// 0-indexed BIT (binary indexed tree / Fenwick tree) (i : [0, len))
template <class T> struct BIT {
    int n;
    std::vector<T> data;
    BIT(int len = 0) : n(len), data(len) {}
    void reset() { std::fill(data.begin(), data.end(), T(0)); }
    void add(int pos, T v) { // a[pos] += v
        pos++;
        while (pos > 0 and pos <= n) data[pos - 1] += v, pos += pos & -pos;
    }
    T sum(int k) const { // a[0] + ... + a[k - 1]
        T res = 0;
        while (k > 0) res += data[k - 1], k -= k & -k;
        return res;
    }

    T sum(int l, int r) const { return sum(r) - sum(l); } // a[l] + ... + a[r - 1]

    template <class OStream> friend OStream &operator<<(OStream &os, const BIT &bit) {
        T prv = 0;
        os << '[';
        for (int i = 1; i <= bit.n; i++) {
            T now = bit.sum(i);
            os << now - prv << ',', prv = now;
        }
        return os << ']';
    }
};


int main() {
    int N;
    cin >> N;

    UndirectedWeightedTree<int> tree(N);
    // TreeLCA lca(N);
    vector<pint> edges(N - 1);
    for (auto &[a, b] : edges) cin >> a >> b, --a, --b, tree.add_edge(a, b, 1);
    dbg(edges);

    auto Distance = [&](int u, int v) -> int {
        // return lca.path_length(u, v);
        return tree.path_length(u, v);
        // const int l = lca.lca(u, v);
        // return lca.depth.at(u) + lca.depth.at(v) - lca.depth.at(l) * 2;
    };

    
    const int root = 0;

    tree.fix_root(root);
    // lca.build(root);
    const euler_tour et(N, edges, root);

    fast_set fs(N);

    vector<int> C(N);
    cin >> C;

    BIT<int> bit(N);

    auto UpdateDist = [&](int left_pos) {
        if (left_pos < 0) return;
        const int right_pos = fs.next(left_pos + 1);

        const int w = bit.sum(left_pos, left_pos + 1);
        bit.add(left_pos, -w);

        if (!fs.contains(left_pos) or right_pos >= N) {
            return;
        }

        const int l = et.visord.at(left_pos), r = et.visord.at(right_pos);
        bit.add(left_pos, Distance(l, r));
    };

    auto Upd = [&](int v) {
        const int pos = et.visord_inv.at(v);

        if (C.at(v)) {
            fs.insert(pos);
        } else {
            fs.erase(pos);
        }

        UpdateDist(pos);
        UpdateDist(fs.prev(pos - 1));
    };

    REP(i, N) {
        if (C.at(i)) Upd(i);
    }

    dbg(C);
    dbg(et.visord);
    dbg(et.visord_inv);

    int Q;
    cin >> Q;
    while (Q--) {
        int tp;
        cin >> tp;
        if (tp == 1) {
            int v;
            cin >> v;
            --v;
            C.at(v) ^= 1;
            Upd(v);
        } else {
            int x, y;
            cin >> x >> y;
            --x, --y;

            dbg(make_tuple(x, y, C));

            if (x != y and tree.lowest_common_ancestor(x, y) == y) {
                const int z = tree.kth_parent(x, Distance(x, y) - 1);
                int zl = et.visord_inv.at(z), zr = et.visord_inv_right.at(z);
                zl = fs.prev(zl - 1);
                zr = fs.next(zr);

                const int f0 = fs.next(0), f1 = fs.prev(N - 1);
                // dbg(make_tuple(z, zl, zr, f0, f1));
                if (f0 > f1) {
                    cout << "0\n";
                } else {
                    const int g0 = et.visord.at(f0), g1 = et.visord.at(f1);

                    int ret = 0;
                    if (zl >= 0 and zr < N) {
                        const int l = et.visord.at(zl);
                        const int r = et.visord.at(zr);
                        ret = bit.sum(f0, zl) + bit.sum(zr, f1) + Distance(g0, g1) + Distance(l, r);
                    } else if (zl >= 0) {
                        const int l = et.visord.at(zl);
                        ret = bit.sum(f0, zl) + Distance(g0, l);
                    } else if (zr < N) {
                        const int r = et.visord.at(zr);
                        ret = bit.sum(zr, f1) + Distance(g1, r);
                    } else {
                        ret = -2;
                        // assert(false);
                    }
                    cout << (ret / 2 + 1) << '\n';
                }
            } else {
                if (x == y) y = 0;
                int lpos = et.visord_inv.at(y), rpos = et.visord_inv_right.at(y);

                lpos = fs.next(lpos);
                rpos = fs.prev(rpos - 1);

                if (lpos > rpos) {
                    cout << "0\n";
                } else {
                    const int l = et.visord.at(lpos), r = et.visord.at(rpos);
                    const auto ret = bit.sum(lpos, rpos) + Distance(l, r);
                    // dbg(make_tuple(l, r, ret));
                    cout << ret / 2 + 1 << '\n';
                }
            }
        }
    }
}
0