結果
問題 | No.148 試験監督(3) |
ユーザー | anta |
提出日時 | 2015-02-09 00:18:10 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 155 ms / 1,000 ms |
コード長 | 16,782 bytes |
コンパイル時間 | 1,176 ms |
コンパイル使用メモリ | 91,332 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-23 08:40:32 |
合計ジャッジ時間 | 2,790 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 47 ms
5,248 KB |
testcase_01 | AC | 50 ms
5,376 KB |
testcase_02 | AC | 134 ms
5,376 KB |
testcase_03 | AC | 141 ms
5,376 KB |
testcase_04 | AC | 137 ms
5,376 KB |
testcase_05 | AC | 127 ms
5,376 KB |
testcase_06 | AC | 95 ms
5,376 KB |
testcase_07 | AC | 155 ms
5,376 KB |
testcase_08 | AC | 122 ms
5,376 KB |
testcase_09 | AC | 3 ms
5,376 KB |
testcase_10 | AC | 4 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:238:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 238 | scanf("%d", &T); | ~~~~~^~~~~~~~~~ main.cpp:241:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 241 | scanf("%s%s", C, P); | ~~~~~^~~~~~~~~~~~~~
ソースコード
#include <string> #include <vector> #include <algorithm> #include <numeric> #include <set> #include <map> #include <queue> #include <iostream> #include <sstream> #include <cstdio> #include <cmath> #include <ctime> #include <cstring> #include <cctype> #include <cassert> #include <limits> #include <functional> #define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i)) #define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i)) #define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i)) #if defined(_MSC_VER) || __cplusplus > 199711L #define aut(r,v) auto r = (v) #else #define aut(r,v) __typeof(v) r = (v) #endif #define each(it,o) for(aut(it, (o).begin()); it != (o).end(); ++ it) #define all(o) (o).begin(), (o).end() #define pb(x) push_back(x) #define mp(x,y) make_pair((x),(y)) #define mset(m,v) memset(m,v,sizeof(m)) #define INF 0x3f3f3f3f #define INFL 0x3f3f3f3f3f3f3f3fLL using namespace std; typedef vector<int> vi; typedef pair<int,int> pii; typedef vector<pair<int,int> > vpii; typedef long long ll; template<typename T, typename U> inline void amin(T &x, U y) { if(y < x) x = y; } template<typename T, typename U> inline void amax(T &x, U y) { if(x < y) x = y; } template<int MOD> struct ModInt { static const int Mod = MOD; unsigned x; ModInt(): x(0) { } ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { signed a = x, b = MOD, u = 1, v = 0; while(b) { signed t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } if(u < 0) u += Mod; ModInt res; res.x = (unsigned)u; return res; } }; template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) { ModInt<MOD> r = 1; while(k) { if(k & 1) r *= a; a *= a; k >>= 1; } return r; } typedef ModInt<1000000007> mint; int digitsMod(char s[], int n, int m) { int x = 0; long long pow10 = 1; for(int i = n-1; i >= 0; i --) { if((x += pow10 * (s[i] - '0') % m) >= m) x -= m; pow10 = pow10 * 10 % m; } return x; } #if 0 #include "C:\Dropbox\backup\implements\Util\TimeIt_Simple.hpp" template<typename T> void precomputeUmekomi(T t, unsigned long long maxN, unsigned interval = 1U << 24, ostream &o = cout, int lineMax = 8) { const char *umeName = "ume"; unsigned umeValues = (unsigned)((maxN + interval) / interval); o << typeid(T).name() << " " << umeName << "[" << umeValues << "] = {" << endl; unsigned i = 0, ii = 0; int linei = 0; double startTime = getTime(), prevTime = startTime, cntTime; while(1) { if(i == 0) { fprintf(stderr, "\r%d / %d (%.4f%%); ", ii, umeValues-1, ii * 1. / (umeValues-1)); cntTime = getTime(); if(ii != 0) fprintf(stderr, "%.4fs / %.4fs; ", cntTime - prevTime, (cntTime - startTime) / ii); prevTime = cntTime; fflush(stderr); if(linei == 0) { if(ii != 0) { o << endl; } linei = lineMax; } o << t << ","; linei --; if(++ ii == umeValues) break; i = interval; } t.step(); i --; } o << endl; o << "};" << endl; } #endif template<typename T, int VALUES> T computeWithUmekomi(const T (&ume)[VALUES], unsigned long long N, unsigned interval = 1U << 24) { unsigned long long idx = N / interval; if(idx >= VALUES) { cerr << "computeWithUmekomi: N >= " << interval * VALUES << endl; idx = VALUES - 1; } T t = ume[idx]; unsigned i = (unsigned)(N - idx * interval); while(i > 0) { t.step(); i --; } return t; } struct FactorialMotInt { int i; mint cnt; static FactorialMotInt init() { FactorialMotInt t = { 0, 1 }; return t; } inline void step() { cnt *= ++ i; } friend ostream &operator<<(ostream &o, const FactorialMotInt &t) { return o << "{" << t.i << "," << t.cnt.get() << "}"; } mint get() const { return cnt; } }; struct FactorialMotInt ume[501] = { {0,1},{2000000,578095319},{4000000,259081142},{6000000,316220877},{8000000,251368199},{10000000,682498929},{12000000,95936601},{14000000,167332441}, {16000000,336060741},{18000000,626497524},{20000000,491101308},{22000000,565768255},{24000000,968999},{26000000,638587686},{28000000,19426633},{30000000,76479948}, {32000000,842267748},{34000000,485348706},{36000000,544075857},{38000000,798967520},{40000000,723816384},{42000000,721996174},{44000000,323604647},{46000000,398699886}, {48000000,294587621},{50000000,67347853},{52000000,196447201},{54000000,228338256},{56000000,762479457},{58000000,811667359},{60000000,27368307},{62000000,59469516}, {64000000,766196482},{66000000,86609485},{68000000,340941507},{70000000,625544428},{72000000,808412394},{74000000,585237443},{76000000,361786913},{78000000,595143852}, {80000000,199888908},{82000000,579691190},{84000000,459188207},{86000000,439729802},{88000000,899297830},{90000000,888050723},{92000000,736550105},{94000000,85990869}, {96000000,56305184},{98000000,168891766},{100000000,927880474},{102000000,934814019},{104000000,567277637},{106000000,44930135},{108000000,47401357},{110000000,281863274}, {112000000,692636218},{114000000,14235602},{116000000,400295761},{118000000,421835306},{120000000,661224977},{122000000,168203998},{124000000,544064410},{126000000,583967898}, {128000000,751231582},{130000000,623534362},{132000000,243276029},{134000000,60050552},{136000000,395891998},{138000000,159554990},{140000000,970055531},{142000000,487998999}, {144000000,82104855},{146000000,513365505},{148000000,1559745},{150000000,261384175},{152000000,323214113},{154000000,444090941},{156000000,80729842},{158000000,664989237}, {160000000,195888993},{162000000,457882808},{164000000,212938473},{166000000,827544702},{168000000,677711203},{170000000,66404266},{172000000,195290384},{174000000,349551356}, {176000000,83489485},{178000000,52167191},{180000000,547665832},{182000000,350016754},{184000000,296269301},{186000000,23015220},{188000000,748566338},{190000000,109838563}, {192000000,105574531},{194000000,542432219},{196000000,325636655},{198000000,630621321},{200000000,933245637},{202000000,238971581},{204000000,557301633},{206000000,848952161}, {208000000,925152039},{210000000,724691727},{212000000,238087006},{214000000,910291942},{216000000,492237273},{218000000,834860913},{220000000,368925948},{222000000,740594930}, {224000000,806047532},{226000000,172115341},{228000000,116261993},{230000000,268838846},{232000000,243624360},{234000000,481661251},{236000000,95182730},{238000000,115435332}, {240000000,136026497},{242000000,710729672},{244000000,366384665},{246000000,270239666},{248000000,79874094},{250000000,112390913},{252000000,103056890},{254000000,339464594}, {256000000,108312174},{258000000,479334442},{260000000,135498044},{262000000,591048681},{264000000,353339603},{266000000,839849206},{268000000,736265527},{270000000,217544623}, {272000000,618898635},{274000000,380858207},{276000000,898554793},{278000000,54062950},{280000000,419363534},{282000000,160398980},{284000000,990918946},{286000000,450718279}, {288000000,648991369},{290000000,500780548},{292000000,39052406},{294000000,460373282},{296000000,461415770},{298000000,643638805},{300000000,668123525},{302000000,673464765}, {304000000,199866123},{306000000,841799766},{308000000,504962686},{310000000,128487469},{312000000,299172297},{314000000,577786541},{316000000,773206631},{318000000,204355779}, {320000000,30977140},{322000000,363172638},{324000000,472935553},{326000000,587220627},{328000000,793270300},{330000000,522049725},{332000000,335416359},{334000000,472012302}, {336000000,332139472},{338000000,464599136},{340000000,309058615},{342000000,580204973},{344000000,954840109},{346000000,895609896},{348000000,836813268},{350000000,386027524}, {352000000,724205533},{354000000,715247054},{356000000,830567832},{358000000,68409439},{360000000,189239124},{362000000,943653305},{364000000,811056092},{366000000,825132993}, {368000000,985084650},{370000000,148528617},{372000000,882148737},{374000000,701445829},{376000000,302177126},{378000000,241107368},{380000000,940567523},{382000000,325334066}, {384000000,115312728},{386000000,218129285},{388000000,180002392},{390000000,917084264},{392000000,435327356},{394000000,421623838},{396000000,59883031},{398000000,79716267}, {400000000,429277690},{402000000,316486674},{404000000,940338439},{406000000,940524812},{408000000,833550543},{410000000,996164327},{412000000,697611981},{414000000,274192146}, {416000000,925347821},{418000000,893732627},{420000000,358655417},{422000000,581830879},{424000000,347046911},{426000000,125354499},{428000000,247662371},{430000000,568392357}, {432000000,209244402},{434000000,149586983},{436000000,309134554},{438000000,263053337},{440000000,780072518},{442000000,990826116},{444000000,155569943},{446000000,711553356}, {448000000,451373308},{450000000,462639908},{452000000,654611901},{454000000,41815820},{456000000,675258797},{458000000,934281721},{460000000,275105629},{462000000,325912072}, {464000000,252551589},{466000000,554917439},{468000000,754363835},{470000000,909210595},{472000000,719566487},{474000000,424989675},{476000000,50590510},{478000000,198768464}, {480000000,99199382},{482000000,747407118},{484000000,497196934},{486000000,726997875},{488000000,296229203},{490000000,703397904},{492000000,732868367},{494000000,26031303}, {496000000,216665960},{498000000,352946234},{500000000,733333339},{502000000,459878625},{504000000,16634739},{506000000,68718097},{508000000,404206040},{510000000,97830135}, {512000000,31131935},{514000000,864326453},{516000000,167831173},{518000000,718498895},{520000000,608823837},{522000000,385388084},{524000000,681756977},{526000000,313132653}, {528000000,442795120},{530000000,256141983},{532000000,636578562},{534000000,553033642},{536000000,919273670},{538000000,326686486},{540000000,141827977},{542000000,693305776}, {544000000,186576440},{546000000,565456578},{548000000,519397500},{550000000,696628828},{552000000,370732451},{554000000,915265013},{556000000,923043932},{558000000,777901604}, {560000000,637939935},{562000000,490676632},{564000000,462528877},{566000000,798895521},{568000000,699767918},{570000000,811575797},{572000000,606870929},{574000000,179111720}, {576000000,508038818},{578000000,752550134},{580000000,848924691},{582000000,34629406},{584000000,435904287},{586000000,208184231},{588000000,206330671},{590000000,131772368}, {592000000,648711554},{594000000,523696723},{596000000,25058942},{598000000,817928963},{600000000,724464507},{602000000,701453022},{604000000,281230685},{606000000,596949867}, {608000000,303076380},{610000000,272814771},{612000000,48824684},{614000000,939889684},{616000000,48527183},{618000000,484458461},{620000000,326159309},{622000000,668422905}, {624000000,965656187},{626000000,359960756},{628000000,407934361},{630000000,456152084},{632000000,124804049},{634000000,920251227},{636000000,483924582},{638000000,167087470}, {640000000,903466878},{642000000,368114731},{644000000,388728584},{646000000,249153339},{648000000,322908524},{650000000,92255682},{652000000,15570863},{654000000,744158074}, {656000000,334326205},{658000000,98349682},{660000000,769795511},{662000000,888146074},{664000000,582627184},{666000000,919419361},{668000000,986708498},{670000000,373745190}, {672000000,256853930},{674000000,702823274},{676000000,308186532},{678000000,180350107},{680000000,606241871},{682000000,273712630},{684000000,682189174},{686000000,946867127}, {688000000,502371023},{690000000,825871994},{692000000,701506133},{694000000,341779962},{696000000,815463367},{698000000,49187570},{700000000,957939114},{702000000,933376898}, {704000000,338121343},{706000000,869630152},{708000000,632627667},{710000000,435887178},{712000000,129621197},{714000000,827722926},{716000000,918513230},{718000000,547838438}, {720000000,852304035},{722000000,689189630},{724000000,567033437},{726000000,212842957},{728000000,404149413},{730000000,663307737},{732000000,206282795},{734000000,488906585}, {736000000,280700600},{738000000,534279149},{740000000,375297772},{742000000,922377372},{744000000,219932130},{746000000,701050258},{748000000,863002719},{750000000,217598709}, {752000000,810551911},{754000000,247844667},{756000000,812283640},{758000000,857241854},{760000000,624148346},{762000000,564827277},{764000000,478982047},{766000000,454039189}, {768000000,48562889},{770000000,671734977},{772000000,508831870},{774000000,897162044},{776000000,892168027},{778000000,277714559},{780000000,624500515},{782000000,808691930}, {784000000,895205045},{786000000,628829100},{788000000,919717789},{790000000,748510389},{792000000,574455974},{794000000,172096141},{796000000,581418893},{798000000,15391652}, {800000000,203191898},{802000000,880691101},{804000000,986598821},{806000000,264688936},{808000000,785804644},{810000000,423951674},{812000000,696623384},{814000000,161960209}, {816000000,541120825},{818000000,841656666},{820000000,629786193},{822000000,269571439},{824000000,76770272},{826000000,421943723},{828000000,751040886},{830000000,672850561}, {832000000,493689107},{834000000,100228913},{836000000,639655136},{838000000,929893103},{840000000,814362881},{842000000,406024012},{844000000,10065330},{846000000,983737173}, {848000000,551060742},{850000000,823845496},{852000000,946421040},{854000000,842203531},{856000000,894247956},{858000000,885362182},{860000000,116667533},{862000000,241427979}, {864000000,281804989},{866000000,563796647},{868000000,774625892},{870000000,256473217},{872000000,918860977},{874000000,753513874},{876000000,304644842},{878000000,161362528}, {880000000,627655552},{882000000,799289297},{884000000,816701166},{886000000,787113234},{888000000,701220427},{890000000,245795606},{892000000,10475577},{894000000,759404319}, {896000000,491466901},{898000000,114495791},{900000000,586445753},{902000000,718623833},{904000000,66547751},{906000000,351472920},{908000000,494166907},{910000000,172114298}, {912000000,364380585},{914000000,965683742},{916000000,117483873},{918000000,237120480},{920000000,193781724},{922000000,107141741},{924000000,793307102},{926000000,236455213}, {928000000,14162538},{930000000,778983779},{932000000,49389215},{934000000,859637374},{936000000,713258160},{938000000,923333660},{940000000,83868974},{942000000,217298111}, {944000000,176966527},{946000000,105359006},{948000000,10430738},{950000000,315103615},{952000000,708233401},{954000000,946149627},{956000000,281329488},{958000000,31503476}, {960000000,965785236},{962000000,916291845},{964000000,899946391},{966000000,512634493},{968000000,121000338},{970000000,492741665},{972000000,165393390},{974000000,917041303}, {976000000,741626808},{978000000,536841269},{980000000,377329025},{982000000,859917803},{984000000,373451745},{986000000,823495900},{988000000,73146164},{990000000,847549272}, {992000000,646654592},{994000000,205951465},{996000000,780882948},{998000000,598245292},{1000000000,698611116}, }; const int Interval = 2000000; mint factorial(int n) { return computeWithUmekomi(ume, n, Interval).get(); } int main() { // precomputeUmekomi<FactorialMotInt>(FactorialMotInt::init(), mint::Mod, Interval); //f(n,p) = f(n-1,p) + f(n-2,p-1) //A011973 //= C(n+1-p,p) * p! //= (n-p+1)! / (n-2p+1)! //= product [n-2p+2..n-p+1] //p<Modと仮定すると、Mod取ってやっても周回することがない。 //埋め込み…(ヒントはコードサイズ、か) int T; scanf("%d", &T); char *C = new char[10002], *P = new char[10002]; rep(ii, T) { scanf("%s%s", C, P); mint ans; long long pp; if(strlen(P) >= 11) { pp = INFL; }else { sscanf(P, "%lld", &pp); } long long nn; if(strlen(C) <= 10) { sscanf(C, "%lld", &nn); }else { nn = INFL; } if(pp >= mint::Mod) { ans = 0; }else if(nn < pp * 2 - 1) { ans = 0; }else if(pp == 0) { ans = 1; }else if(nn == 0) { ans = 0; }else { mint n = digitsMod(C, strlen(C), mint::Mod); mint p = digitsMod(P, strlen(P), mint::Mod); int L = (n - p * 2 + 2).get(), R = (n - p + 1).get(); if(L > R || L == 0) { //0を含む ans = 0; }else { //product[L..R] = R! / (L-1)! ans = factorial(R); ans /= factorial(L-1); } } printf("%d\n", ans.get()); } return 0; }