結果
| 問題 |
No.147 試験監督(2)
|
| コンテスト | |
| ユーザー |
anta
|
| 提出日時 | 2015-02-09 01:41:55 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 146 ms / 2,000 ms |
| コード長 | 4,862 bytes |
| コンパイル時間 | 633 ms |
| コンパイル使用メモリ | 83,340 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-06-23 11:29:06 |
| 合計ジャッジ時間 | 1,815 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 4 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:158:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
158 | scanf("%d", &N);
| ~~~~~^~~~~~~~~~
main.cpp:163:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
163 | scanf("%lld%s", &C, D);
| ~~~~~^~~~~~~~~~~~~~~~~
ソースコード
#include <string>
#include <vector>
#include <algorithm>
#include <numeric>
#include <set>
#include <map>
#include <queue>
#include <iostream>
#include <sstream>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <cctype>
#include <cassert>
#include <limits>
#include <functional>
#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))
#define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i))
#define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i))
#if defined(_MSC_VER) || __cplusplus > 199711L
#define aut(r,v) auto r = (v)
#else
#define aut(r,v) __typeof(v) r = (v)
#endif
#define each(it,o) for(aut(it, (o).begin()); it != (o).end(); ++ it)
#define all(o) (o).begin(), (o).end()
#define pb(x) push_back(x)
#define mp(x,y) make_pair((x),(y))
#define mset(m,v) memset(m,v,sizeof(m))
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3fLL
using namespace std;
typedef vector<int> vi; typedef pair<int,int> pii; typedef vector<pair<int,int> > vpii; typedef long long ll;
template<typename T, typename U> inline void amin(T &x, U y) { if(y < x) x = y; }
template<typename T, typename U> inline void amax(T &x, U y) { if(x < y) x = y; }
template<int MOD>
struct ModInt {
static const int Mod = MOD;
unsigned x;
ModInt(): x(0) { }
ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; }
ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; }
int get() const { return (int)x; }
ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
ModInt inverse() const {
signed a = x, b = MOD, u = 1, v = 0;
while(b) {
signed t = a / b;
a -= t * b; std::swap(a, b);
u -= t * v; std::swap(u, v);
}
if(u < 0) u += Mod;
ModInt res; res.x = (unsigned)u;
return res;
}
};
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {
ModInt<MOD> r = 1;
while(k) {
if(k & 1) r *= a;
a *= a;
k >>= 1;
}
return r;
}
typedef ModInt<1000000007> mint;
int digitsMod(char s[], int n, int m) {
int x = 0; long long pow10 = 1;
for(int i = n-1; i >= 0; i --) {
if((x += pow10 * (s[i] - '0') % m) >= m) x -= m;
pow10 = pow10 * 10 % m;
}
return x;
}
struct Matrix {
typedef mint Num;
static const int MaxN = 2;
int hei, wid;
Num v[MaxN][MaxN];
Matrix() {}
Matrix(int n, int m): hei(n), wid(m) { mset(v, 0); }
inline int height() const { return hei; }
inline int width() const { return wid; }
inline Num& at(int i, int j) { return v[i][j]; }
inline const Num& at(int i, int j) const { return v[i][j]; }
static Matrix identity(int n) {
Matrix A(n, n);
rep(i, n) A.at(i, i) = 1;
return A;
}
inline static Matrix identity(const Matrix& A) { return identity(A.height()); }
Matrix& operator*=(const Matrix& B) {
int n = height(), m = B.width(), p = B.height();
assert(p == width());
const unsigned (*b)[MaxN] = reinterpret_cast<const unsigned (*)[MaxN]>(B.v);
Num w[MaxN][MaxN];
rep(i, n) {
const unsigned *ai = reinterpret_cast<const unsigned*>(v[i]);
rep(j, m) {
unsigned long long x = 0;
rep(k, p) x += (unsigned long long)ai[k] * b[k][j];
w[i][j].x = x % mint::Mod;
}
}
memcpy(v, w, sizeof(v));
return *this;
}
};
Matrix operator^(const Matrix& t, ll k) {
Matrix A = t, B = Matrix::identity(t);
while(k) {
if(k & 1) B *= A;
A *= A;
k >>= 1;
}
return B;
}
int fibonacci(long long n, int Mod) {
int m2 = 1, m1 = 1, m0 = 0;
int x2 = 1, x1 = 0, x0 = 1;
while(n > 0) {
if (n & 1) {
int a2 = ((long long)x2 * m2 + (long long)x1 * m1) % Mod;
int a1 = ((long long)x2 * m1 + (long long)x1 * m0) % Mod;
int a0 = ((long long)x1 * m1 + (long long)x0 * m0) % Mod;
x2 = a2, x1 = a1, x0 = a0;
}
n >>= 1;
if (n > 0) {
int a2 = ((long long)m2 * m2 + (long long)m1 * m1) % Mod;
int a1 = ((long long)m2 * m1 + (long long)m1 * m0) % Mod;
int a0 = ((long long)m1 * m1 + (long long)m0 * m0) % Mod;
m2 = a2, m1 = a1, m0 = a0;
}
}
return x1 % Mod;
}
int main() {
int N;
scanf("%d", &N);
char *D = new char[202];
mint ans = 1;
rep(i, N) {
long long C;
scanf("%lld%s", &C, D);
mint f = fibonacci(C+2, mint::Mod);
int d = digitsMod(D, strlen(D), mint::Mod-1);
mint t = d == 0 && f.get() == 0 ? 0 : f ^ d;
ans *= t;
}
printf("%d\n", ans.get());
return 0;
}
anta