結果

問題 No.434 占い
ユーザー pekempeypekempey
提出日時 2016-10-14 22:56:35
言語 C++11
(gcc 11.4.0)
結果
AC  
実行時間 160 ms / 2,000 ms
コード長 2,663 bytes
コンパイル時間 1,843 ms
コンパイル使用メモリ 177,252 KB
実行使用メモリ 5,632 KB
最終ジャッジ日時 2024-11-22 08:34:39
合計ジャッジ時間 3,635 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 11 ms
5,504 KB
testcase_01 AC 10 ms
5,504 KB
testcase_02 AC 11 ms
5,504 KB
testcase_03 AC 11 ms
5,504 KB
testcase_04 AC 11 ms
5,376 KB
testcase_05 AC 11 ms
5,248 KB
testcase_06 AC 12 ms
5,504 KB
testcase_07 AC 11 ms
5,376 KB
testcase_08 AC 11 ms
5,376 KB
testcase_09 AC 12 ms
5,504 KB
testcase_10 AC 12 ms
5,504 KB
testcase_11 AC 13 ms
5,504 KB
testcase_12 AC 26 ms
5,504 KB
testcase_13 AC 12 ms
5,504 KB
testcase_14 AC 11 ms
5,504 KB
testcase_15 AC 21 ms
5,632 KB
testcase_16 AC 21 ms
5,376 KB
testcase_17 AC 20 ms
5,504 KB
testcase_18 AC 22 ms
5,504 KB
testcase_19 AC 35 ms
5,504 KB
testcase_20 AC 160 ms
5,632 KB
testcase_21 AC 21 ms
5,632 KB
testcase_22 AC 21 ms
5,376 KB
testcase_23 AC 11 ms
5,504 KB
testcase_24 AC 20 ms
5,376 KB
testcase_25 AC 21 ms
5,504 KB
testcase_26 AC 15 ms
5,504 KB
testcase_27 AC 21 ms
5,376 KB
testcase_28 AC 23 ms
5,376 KB
testcase_29 AC 41 ms
5,504 KB
testcase_30 AC 133 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

pair<long long, long long> extgcd(long long a, long long b) {
	if (b == 0) return{ 1, 0 };
	long long x, y;
	tie(x, y) = extgcd(b, a % b);
	return{ y, x - a / b * y };
}

long long modulo(long long a, long long mod) {
	return (a % mod + mod) % mod;
}

long long modinv(long long a, long long mod) {
	return modulo(extgcd(a, mod).first, mod);
}

map<long long, long long> prime_factors(long long n) {
	map<long long, long long> ret;
	for (long long i = 2; i * i <= n; i++)
		while (n % i == 0) ret[i]++, n /= i;
	if (n != 1) ret[n]++;
	return ret;
}

struct Combination {
	struct CombinationLucas {
		long long p, q;
		long long mod;
		vector<long long> power;
		vector<long long> F, invF;
		vector<int> e;

		CombinationLucas(int n, long long p, long long q)
			: p(p), q(q), F(n), invF(n), e(n), power(q + 1) {
			mod = 1;
			for (int i = 0; i < q; i++) {
				mod *= p;
			}

			power[0] = 1;
			for (int i = 1; i <= q; i++) {
				power[i] = power[i - 1] * p % mod;
			}

			F[0] = 1;
			for (long long i = 1; i < n; i++) {
				if (i % p == 0) {
					F[i] = F[i - 1];
				} else {
					F[i] = F[i - 1] * i % mod;
				}
			}

			invF[n - 1] = modinv(F[n - 1], mod);
			for (long long i = n - 2; i >= 0; i--) {
				if ((i + 1) % p == 0) {
					invF[i] = invF[i + 1];
				} else {
					invF[i] = invF[i + 1] * (i + 1) % mod;
				}
			}

			for (int i = 1; i < n; i++) {
				F[i] = F[i] * F[i / p] % mod;
				invF[i] = invF[i] * invF[i / p] % mod;
				e[i] = i / p + e[i / p];
			}
		}

		long long operator()(int n, int r) {
			if (n < 0 || r < 0 || n < r) return 0;
			long long result = F[n] * invF[n - r] % mod * invF[r] % mod;
			result = result * power[min<int>(q, e[n] - e[n - r] - e[r])] % mod;
			return result;
		}
	};

	vector<long long> inv;
	vector<CombinationLucas> cs;

	Combination(int n, long long mod) {
		auto pf = prime_factors(mod);
		for (auto kv : pf) {
			cs.emplace_back(n, kv.first, kv.second);
		}

		long long m = 1;
		for (auto &c : cs) {
			inv.push_back(modinv(m, c.mod));
			m *= c.mod;
		}
	}

	long long operator()(int n, int r) {
		long long x = 0;
		long long mod = 1;

		for (int i = 0; i < cs.size(); i++) {
			long long y = cs[i](n, r);
			x += mod * (y - x) * inv[i];
			mod *= cs[i].mod;
			x %= mod;
		}

		return (x % mod + mod) % mod;
	}
};

int main() {
	int T;
	cin >> T;

	Combination cb(101010, 9);

	while (T--) {
		string s;
		cin >> s;

		int n = s.size();

		long long ans = 0;
		for (int i = 0; i < n; i++) {
			(ans += cb(n - 1, i) * (s[i] - '0')) %= 9;
		}
		if (ans == 0) ans = 9;

		if (count(s.begin(), s.end(), '0') == n) ans = 0;
		printf("%lld\n", ans);
	}
}
0