結果
問題 | No.117 組み合わせの数 |
ユーザー | srup٩(๑`н´๑)۶ |
提出日時 | 2016-11-09 23:30:33 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 89 ms / 5,000 ms |
コード長 | 1,970 bytes |
コンパイル時間 | 453 ms |
コンパイル使用メモリ | 60,384 KB |
実行使用メモリ | 50,532 KB |
最終ジャッジ日時 | 2024-11-25 06:06:28 |
合計ジャッジ時間 | 894 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:76:22: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 76 | scanf(" %c(%lld,%lld)\n", &c, &n, &k); | ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ソースコード
#include <iostream> #include <vector> #include <cstdio> #include <algorithm> using namespace std; typedef long long ll; typedef vector<int> vint; typedef pair<int,int> pint; typedef vector<pint> vpint; #define rep(i,n) for(int i=0;i<(n);i++) #define reps(i,f,n) for(int i=(f);i<(n);i++) #define each(it,v) for(__typeof((v).begin()) it=(v).begin();it!=(v).end();it++) #define all(v) (v).begin(),(v).end() #define pb push_back #define mp make_pair #define fi first #define se second #define chmax(a, b) a = (((a)<(b)) ? (b) : (a)) #define chmin(a, b) a = (((a)>(b)) ? (b) : (a)) const int MOD = 1e9 + 7; const int INF = 1e9; const int MAX_N = 2000000; ll inv[MAX_N + 10]; ll fac[MAX_N + 10], facInv[MAX_N + 10]; class MATH{ public: void init(void){ inverse(); factroial(); } void inverse(void){ inv[1] = 1; for (int i = 2; i <= MAX_N; ++i){ // inv[i] = MOD - (MOD / i) * inv[MOD % i] % MOD; inv[i] = inv[MOD % i] * (MOD - MOD / i) % MOD; } } void factroial(void){ fac[0] = facInv[0] = 1; for (int i = 1; i <= MAX_N; ++i){ fac[i] = (fac[i - 1] * i) % MOD; facInv[i] = (facInv[i - 1] * inv[i]) % MOD; } } ll nCk(ll n, ll k){// n! / k!*(n-k)! if(k < 0 || k > n) return 0; ll ret = fac[n]; (ret *= facInv[k]) %= MOD; (ret *= facInv[n - k]) %= MOD; return ret; } ll nHk(ll n, ll k){// nHk = n+k-1 C k = (n+k-1)! / k! * (n-1)! if(n == 0 && k == 0) return 1; ll ret = fac[n + k - 1]; (ret *= facInv[k]) %= MOD; (ret *= facInv[n - 1]) %= MOD; return ret; } ll nPk(ll n, ll k){//nPk = n! / (n-k)! if(k < 0 || k > n) return 0; ll ret = fac[n]; (ret *= facInv[n - k]) %= MOD; return ret; } }; int main(void){ int t; cin >> t; MATH mt; mt.init(); rep(i, t){ char c; ll n, k; scanf(" %c(%lld,%lld)\n", &c, &n, &k); if(c == 'C'){ printf("%lld\n", mt.nCk(n, k) % MOD); }else if(c == 'P'){ printf("%lld\n", mt.nPk(n, k) % MOD); }else{ printf("%lld\n", mt.nHk(n, k) % MOD); } } return 0; }