結果
問題 | No.443 GCD of Permutation |
ユーザー | りあん |
提出日時 | 2016-11-11 22:40:23 |
言語 | C#(csc) (csc 3.9.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 10,733 bytes |
コンパイル時間 | 1,080 ms |
コンパイル使用メモリ | 111,744 KB |
実行使用メモリ | 17,792 KB |
最終ジャッジ日時 | 2024-11-25 08:40:46 |
合計ジャッジ時間 | 2,787 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | AC | 21 ms
17,408 KB |
testcase_02 | AC | 22 ms
17,536 KB |
testcase_03 | AC | 21 ms
17,536 KB |
testcase_04 | AC | 23 ms
17,792 KB |
testcase_05 | AC | 21 ms
17,408 KB |
testcase_06 | AC | 22 ms
17,408 KB |
testcase_07 | AC | 23 ms
17,664 KB |
testcase_08 | AC | 23 ms
17,664 KB |
testcase_09 | AC | 22 ms
17,664 KB |
testcase_10 | AC | 22 ms
17,664 KB |
testcase_11 | WA | - |
testcase_12 | AC | 22 ms
17,664 KB |
testcase_13 | AC | 22 ms
17,664 KB |
testcase_14 | AC | 20 ms
17,280 KB |
testcase_15 | AC | 21 ms
17,536 KB |
testcase_16 | AC | 22 ms
17,792 KB |
testcase_17 | AC | 21 ms
17,536 KB |
testcase_18 | AC | 22 ms
17,664 KB |
testcase_19 | AC | 23 ms
17,664 KB |
testcase_20 | AC | 22 ms
17,664 KB |
testcase_21 | AC | 24 ms
17,664 KB |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | AC | 22 ms
17,664 KB |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | AC | 22 ms
17,536 KB |
testcase_29 | WA | - |
testcase_30 | AC | 21 ms
17,536 KB |
testcase_31 | AC | 22 ms
17,536 KB |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System; using System.Collections.Generic; using System.Linq; using System.Linq.Expressions; using System.IO; using Binary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.BinaryExpression>; using Unary = System.Func<System.Linq.Expressions.ParameterExpression, System.Linq.Expressions.UnaryExpression>; class Program { static StreamWriter sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; const int M = 1000000007; const double eps = 1e-9; static int[] dd = { 0, 1, 0, -1, 0 }; static void Main() { var s = sc.Str; int n = s.Length; var num = new int[10]; int sum = 0; foreach (var item in s) { ++num[item - '0']; sum += item - '0'; } foreach (var item in num) { if (item == n) { DBG(s); return; } } int ans = 1; if (sum % 9 == 0) ans = 9; else if (sum % 3 == 0) ans = 3; for (int i = 0; i < 9; i++) { if (num[i] > 0 && num[i + 1] > 0) { DBG(ans); return; } } if (num[0] + num[5] == n) { ans *= 5; } if (num[0] + num[8] == n) { ans *= 8; } else if (num[0] + num[4] + num[8] == n) { ans *= 4; } else if (num[0] + num[2] + num[4] + num[6] + num[8] == n) { ans *= 2; } Prt(ans); sw.Flush(); } static void swap<T>(ref T a, ref T b) { var t = a; a = b; b = t; } static T Max<T>(params T[] a) => a.Max(); static T Min<T>(params T[] a) => a.Min(); static void DBG<T>(params T[] a) => Console.WriteLine(string.Join(" ", a)); static void DBG(params object[] a) => Console.WriteLine(string.Join(" ", a)); static void Prt<T>(params T[] a) => sw.WriteLine(string.Join(" ", a)); static void Prt(params object[] a) => sw.WriteLine(string.Join(" ", a)); } class Score : IComparable { int score, time; public int CompareTo(object obj) { var x = obj as Score; return this.score == x.score ? x.time.CompareTo(this.time) : this.score.CompareTo(x.score); } } static class ex { public static void swap<T>(this IList<T> a, int i, int j) { var t = a[i]; a[i] = a[j]; a[j] = t; } public static T[] copy<T>(this IList<T> a) { var ret = new T[a.Count]; for (int i = 0; i < a.Count; i++) ret[i] = a[i]; return ret; } } public static class Operator<T> { static readonly ParameterExpression x = Expression.Parameter(typeof(T), "x"); static readonly ParameterExpression y = Expression.Parameter(typeof(T), "y"); public static readonly Func<T, T, T> Add = Lambda(Expression.Add); public static readonly Func<T, T, T> Subtract = Lambda(Expression.Subtract); public static readonly Func<T, T, T> Multiply = Lambda(Expression.Multiply); public static readonly Func<T, T, T> Divide = Lambda(Expression.Divide); public static readonly Func<T, T> Plus = Lambda(Expression.UnaryPlus); public static readonly Func<T, T> Negate = Lambda(Expression.Negate); public static Func<T, T, T> Lambda(Binary op) => Expression.Lambda<Func<T, T, T>>(op(x, y), x, y).Compile(); public static Func<T, T> Lambda(Unary op) => Expression.Lambda<Func<T, T>>(op(x), x).Compile(); } class scanCHK : sc { public static new string Str { get { var s = Console.ReadLine(); return s == s.Trim() ? s : ""; } } } class sc { public static int Int => int.Parse(Str); public static long Long => long.Parse(Str); public static double Double => double.Parse(Str); public static string Str => Console.ReadLine().Trim(); public static int[] IntArr => StrArr.Select(int.Parse).ToArray(); public static long[] LongArr => StrArr.Select(long.Parse).ToArray(); public static double[] DoubleArr => StrArr.Select(double.Parse).ToArray(); public static string[] StrArr => Str.Split(); static bool eq<T, U>() => typeof(T).Equals(typeof(U)); static T ct<T, U>(U inp) => (T)Convert.ChangeType(inp, typeof(T)); static T cv<T>(string inp) => eq<T, int>() ? ct<T, int>(int.Parse(inp)) : eq<T, long>() ? ct<T, long>(long.Parse(inp)) : eq<T, double>() ? ct<T, double>(double.Parse(inp)) : eq<T, char>() ? ct<T, char>(inp[0]) : ct<T, string>(inp); public static void Multi<T>(out T a) => a = cv<T>(Str); public static void Multi<T, U>(out T a, out U b) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); } public static void Multi<T, U, V>(out T a, out U b, out V c) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); } public static void Multi<T, U, V, W>(out T a, out U b, out V c, out W d) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); } public static void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e) { var ar = StrArr; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]); } } struct ModInt { public static long Mod = 1000000007; long val; public ModInt(long v) { val = (v % Mod + Mod) % Mod; } public static implicit operator ModInt(long x) => new ModInt(x); public static explicit operator long(ModInt x) => x.val; public static ModInt operator+(ModInt x, ModInt y) => x.val + y.val; public static ModInt operator-(ModInt x, ModInt y) => x.val - y.val; public static ModInt operator*(ModInt x, ModInt y) => x.val * y.val; // must : gcd(y, Mod) == 1 public static ModInt operator/(ModInt x, ModInt y) => x * ~y; // powmod(x, y, Mod); public static ModInt operator^(ModInt x, long y) { if (x.val == 0) return x; if (y == 0) return 1; var t = x ^ (y / 2); if ((y & 1) == 0) return t * t; return t * t * x; } public static ModInt operator-(ModInt x) => -(x.val); // inv(x) : x * inv(x) == 1 // must : gcd(x, Mod) == 1 public static ModInt operator~(ModInt x) => x ^ (Mod - 2); public override string ToString() => this.val.ToString(); // public static bool operator==(ModInt x, ModInt y) => x.val == y.val; // public static bool operator!=(ModInt x, ModInt y) => x.val != y.val; // public override bool Equals(object obj) => obj != null && this.GetType() == obj.GetType() && this.val == ((ModInt)obj).val; // public override int GetHashCode() => (int)this.val; } class mymath { public static long Mod = 1000000007; public static bool isprime(long a) { if (a < 2) return false; for (long i = 2; i * i <= a; i++) if (a % i == 0) return false; return true; } public static bool[] sieve(int n) { var p = new bool[n + 1]; for (int i = 2; i <= n; i++) p[i] = true; for (int i = 2; i * i <= n; i++) if (p[i]) for (int j = i * i; j <= n; j += i) p[j] = false; return p; } public static List<int> getprimes(int n) { var prs = new List<int>(); var p = sieve(n); for (int i = 2; i <= n; i++) if (p[i]) prs.Add(i); return prs; } public static long[][] E(int n) { var ret = new long[n][]; for (int i = 0; i < n; i++) { ret[i] = new long[n]; ret[i][i] = 1; } return ret; } public static long[][] pow(long[][] A, long n) { if (n == 0) return E(A.Length); var t = pow(A, n / 2); if ((n & 1) == 0) return mul(t, t); return mul(mul(t, t), A); } public static long dot(long[] x, long[] y) { int n = x.Length; long ret = 0; for (int i = 0; i < n; i++) ret = (ret + x[i] * y[i]) % Mod; return ret; } public static long[][] trans(long[][] A) { int n = A[0].Length, m = A.Length; var ret = new long[n][]; for (int i = 0; i < n; i++) { ret[i] = new long[m]; for (int j = 0; j < m; j++) ret[i][j] = A[j][i]; } return ret; } public static long[] mul(long[][] A, long[] x) { int n = A.Length; var ret = new long[n]; for (int i = 0; i < n; i++) ret[i] = dot(x, A[i]); return ret; } public static long[][] mul(long[][] A, long[][] B) { int n = A.Length; var Bt = trans(B); var ret = new long[n][]; for (int i = 0; i < n; i++) ret[i] = mul(Bt, A[i]); return ret; } public static long[] add(long[] x, long[] y) { int n = x.Length; var ret = new long[n]; for (int i = 0; i < n; i++) ret[i] = (x[i] + y[i]) % Mod; return ret; } public static long[][] add(long[][] A, long[][] B) { int n = A.Length; var ret = new long[n][]; for (int i = 0; i < n; i++) ret[i] = add(A[i], B[i]); return ret; } public static long pow(long a, long b) { if (a >= Mod) return pow(a % Mod, b); if (a == 0) return 0; if (b == 0) return 1; var t = pow(a, b / 2); if ((b & 1) == 0) return t * t % Mod; return t * t % Mod * a % Mod; } public static long inv(long a) => pow(a, Mod - 2); public static long gcd(long a, long b) { while (b > 0) { var t = a % b; a = b; b = t; } return a; } // a x + b y = gcd(a, b) public static long extgcd(long a, long b, out long x, out long y) { long g = a; x = 1; y = 0; if (b != 0) { g = extgcd(b, a % b, out y, out x); y -= a / b * x; } return g; } public static long lcm(long a, long b) => a * (b / gcd(a, b)); public static long comb(int n, int r) { if (n < 0 || r < 0 || r > n) return 0; if (n - r < r) r = n - r; if (r == 0) return 1; if (r == 1) return n; int[] numer = new int[r], denom = new int[r]; for (int k = 0; k < r; k++) { numer[k] = n - r + k + 1; denom[k] = k + 1; } for (int p = 2; p <= r; p++) { int piv = denom[p - 1]; if (piv > 1) { int ofst = (n - r) % p; for (int k = p - 1; k < r; k += p) { numer[k - ofst] /= piv; denom[k] /= piv; } } } long ret = 1; for (int k = 0; k < r; k++) if (numer[k] > 1) ret = ret * numer[k] % Mod; return ret; } }