結果
問題 | No.350 d=vt |
ユーザー | not_522 |
提出日時 | 2016-12-12 17:36:03 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 17,154 bytes |
コンパイル時間 | 1,511 ms |
コンパイル使用メモリ | 176,648 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-05 05:13:09 |
合計ジャッジ時間 | 2,022 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 1 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 1 ms
5,248 KB |
testcase_13 | AC | 1 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; struct Initializer { Initializer() { cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(15); } } initializer; template<typename T> class Addition { public: template<typename V> T operator+(const V& v) const { return T(static_cast<const T&>(*this)) += v; } }; template<typename T> class Subtraction { public: template<typename V> T operator-(const V& v) const { return T(static_cast<const T&>(*this)) -= v; } }; template<typename T> class Multiplication { public: template<typename V> T operator*(const V& v) const { return T(static_cast<const T&>(*this)) *= v; } }; template<typename T> class Division { public: template<typename V> T operator/(const V& v) const { return T(static_cast<const T&>(*this)) /= v; } }; template<typename T> class Modulus { public: template<typename V> T operator%(const V& v) const { return T(static_cast<const T&>(*this)) %= v; } }; template<typename T> class IndivisibleArithmetic : public Addition<T>, public Subtraction<T>, public Multiplication<T> {}; template<typename T> class Arithmetic : public IndivisibleArithmetic<T>, public Division<T> {}; template<typename T> class Ordered { public: template<typename V> bool operator==(const V& v) const { return !(static_cast<T>(v) < static_cast<const T&>(*this) || static_cast<const T&>(*this) < static_cast<T>(v)); } template<typename V> bool operator!=(const V& v) const { return static_cast<T>(v) < static_cast<const T&>(*this) || static_cast<const T&>(*this) < static_cast<T>(v); } template<typename V> bool operator>(const V& v) const { return static_cast<T>(v) < static_cast<const T&>(*this); } template<typename V> bool operator<=(const V& v) const { return !(static_cast<T>(v) < static_cast<const T&>(*this)); } template<typename V> bool operator>=(const V& v) const { return !(static_cast<const T&>(*this) < static_cast<T>(v)); } }; template<int IntegerSize = 6, int DecimalSize = 9> class BigDecimal : public Arithmetic<BigDecimal<IntegerSize, DecimalSize>>, public Ordered<BigDecimal<IntegerSize, DecimalSize>> { private: const static int BitSize = 31; const static bool PLUS = false; const static bool MINUS = true; constexpr static long double EPSILON = pow<long double>(2, -(BitSize - 4) * DecimalSize); bool sign; array<long long, IntegerSize + DecimalSize> d; public: BigDecimal() { *this = BigDecimal(0); } BigDecimal(int n) { sign = PLUS; for (auto& i : d) i = 0; d[DecimalSize] = n; normal(); } BigDecimal(long long n) { sign = PLUS; for (auto& i : d) i = 0; d[DecimalSize] = n; normal(); } BigDecimal(string str) { *this = BigDecimal(0); bool minus = false; if (str[0] == '-') { minus = true; str = str.substr(1); } BigDecimal t = 1; bool decimal = false; for (int i = 0; i < (int)str.size(); ++i) { if (str[i] == '.') { decimal = true; } else { if (decimal) *this += (t /= 10) * (str[i] - '0'); else *this = *this * 10 + (str[i] - '0'); } } if (minus) sign = MINUS; else sign = PLUS; } BigDecimal(double r) { *this = BigDecimal(0); int n; BigDecimal b = (r >= 0 ? BigDecimal(1) : BigDecimal(-1)); r = 2 * abs(frexp(abs(r), &n)); b <<= n - 1; while (r) { if (r >= 1) { *this += b; r -= 1; } r *= 2; b >>= 1; } } BigDecimal(long double r) { *this = BigDecimal(0); int n; BigDecimal b = (r >= 0 ? BigDecimal(1) : BigDecimal(-1)); r = 2 * abs(frexp(abs(r), &n)); b <<= n - 1; while (r) { if (r >= 1) { *this += b; r -= 1; } r *= 2; b >>= 1; } } BigDecimal normal() { for (int i = 0; i < IntegerSize + DecimalSize - 1; ++i) { d[i + 1] += d[i] >> BitSize; d[i] &= (1ll << BitSize) - 1; } if (d.back() < 0) { sign = !sign; for (auto& i : d) i = -i; normal(); } if (d.back() >= (1ll << BitSize)) throw "overflow"; if (all_of(d.begin(), d.end(), [](long long i){return i == 0;})) sign = PLUS; return *this; } BigDecimal operator-() const { BigDecimal bd(*this); bd.sign = !bd.sign; return bd; } BigDecimal operator<<(int a) const {return BigDecimal(*this) <<= a;} BigDecimal operator>>(int a) const {return BigDecimal(*this) >>= a;} BigDecimal operator%(const BigDecimal &a) const {return BigDecimal(*this) %= a;} BigDecimal operator<<=(int a) { if (a < 0) return *this >>= -a; while (a >= BitSize) { if (d.back()) throw "overflow"; for (int i = IntegerSize + DecimalSize; --i > 0; ) d[i] = d[i - 1]; d[0] = 0; a -= BitSize; } if (d.back() >= (1ll << (BitSize - a))) throw "overflow"; for (auto& i : d) i <<= a; return normal(); } BigDecimal operator>>=(int a) { if (a < 0) return *this <<= -a; while (a >= BitSize) { for (int i = 0; i < IntegerSize + DecimalSize - 1; ++i) d[i] = d[i + 1]; d.back() >>= BitSize; a -= BitSize; } for (int i = 0; i < IntegerSize + DecimalSize - 1; ++i) { d[i] |= d[i + 1] << BitSize; d[i + 1] = 0; } for (auto& i : d) i >>= a; return normal(); } BigDecimal operator+=(const BigDecimal &a) { if (sign == a.sign) { for (int i = 0; i < IntegerSize + DecimalSize; ++i) d[i] += a.d[i]; } else { for (int i = 0; i < IntegerSize + DecimalSize; ++i) d[i] -= a.d[i]; } return normal(); } BigDecimal operator-=(const BigDecimal &a) { return *this += -a; } BigDecimal operator*=(const BigDecimal& a) { BigDecimal res = 0; for (int i = 0; i < IntegerSize + DecimalSize; ++i) { if (i < DecimalSize) res = (res + *this * a.d[i]) >> BitSize; else res += *this * a.d[i] << (i - DecimalSize) * BitSize; } res.sign = (sign == a.sign ? PLUS : MINUS); return *this = res.normal(); } BigDecimal operator*=(const unsigned int& a) { for (auto& i : d) i *= a; return normal(); } BigDecimal operator/=(const BigDecimal &a) { if (a == 0) throw "divide by zero"; BigDecimal rev = (double)1 / a.toDouble(); for (int i = 0; i < 7; ++i) rev = (rev << 1) - a * rev * rev; rev.sign = a.sign; return *this *= rev; } BigDecimal operator%=(const BigDecimal &a) { if (a == 0) throw "modulo by zero"; return *this -= floor(*this / a) * a; } BigDecimal operator-(const BigDecimal& v) const { return BigDecimal(*this) -= v; } BigDecimal operator++() { return *this += 1; } BigDecimal operator++(int) { BigDecimal bd = *this; *this += 1; return bd; } BigDecimal operator--() { return *this -= 1; } BigDecimal operator--(int) { BigDecimal bd = *this; *this -= 1; return bd; } bool operator<(const BigDecimal &a) const { BigDecimal aa = a - EPSILON; if (sign == MINUS) { if (aa.sign == MINUS) { if (a.sign == MINUS) return -a < -*this; else return *this + EPSILON < a + EPSILON; } else { return true; } } if (aa.sign == MINUS) return false; for (int i = IntegerSize + DecimalSize; i-- > 0; ) if (d[i] != aa.d[i]) return d[i] < aa.d[i]; return false; } bool equals(const BigDecimal &a) const { return sign == a.sign && d == a.d; } int toInt() const { int res = 0; for (int i = 0; i < IntegerSize; ++i) res += d[DecimalSize + i] << BitSize * i; if (sign == MINUS) return -res; return res; } long long toLongLong() const { long long res = 0; for (int i = 0; i < IntegerSize; ++i) res += d[DecimalSize + i] << BitSize * i; if (sign == MINUS) return -res; return res; } string toString(int digit = 100, string mode = "near") const { string str; BigDecimal a = *this, bd = 1; if (a.sign == MINUS) { str += "-"; a.sign = PLUS; } if (mode == "near") { BigDecimal round = BigDecimal(0.5); for (int i = 0; i < digit; ++i) round /= 10; a += round + EPSILON; } if (mode == "ceil") { BigDecimal round = 1; for (int i = 0; i < digit; ++i) round /= 10; a += round - EPSILON; } for (; bd <= a; bd *= 10) ++digit; if (bd > 1) { bd /= 10; --digit; } for (int i = 0; i < digit + 1; ++i) { if (bd == 0) { str += "0"; continue; } if (bd * 10 == 1) str += "."; int d = 0; while (bd < a) { a -= bd; ++d; } if (d > 9) { d -= 10; string::iterator itr = str.end(); while (true) { if (itr == str.begin()) { str = "1" + str; break; } --itr; if (*itr == '.') continue; ++*itr; if (*itr > '9') *itr = '0'; else break; } } str += '0' + d; bd /= 10; } return str; } double toDouble() const { double res = 0; for (int i = 0; i < IntegerSize + DecimalSize; ++i) res += d[i] * pow(2, (i - DecimalSize) * BitSize); if (sign == MINUS) return -res; return res; } bool isPlus() const { return sign == PLUS; } bool isMinus() const { return sign == MINUS; } template<int I, int D> friend BigDecimal<I, D> pow(const BigDecimal<I, D> &x, const BigDecimal<I, D> &y); template<int I, int D> friend BigDecimal<I, D> floor(BigDecimal<I, D> x); }; template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> pi() { const static BigDecimal<IntegerSize, DecimalSize> PI = (atan(BigDecimal<IntegerSize, DecimalSize>(1) / 5) << 4) - (atan(BigDecimal<IntegerSize, DecimalSize>(1) / 239) << 2); return PI; } template<int IntegerSize, int DecimalSize> inline BigDecimal<IntegerSize, DecimalSize> operator+(const int& a, BigDecimal<IntegerSize, DecimalSize> b) { return BigDecimal<IntegerSize, DecimalSize>(a) + b; } template<int IntegerSize, int DecimalSize> inline BigDecimal<IntegerSize, DecimalSize> operator-(const int& a, BigDecimal<IntegerSize, DecimalSize> b) { return BigDecimal<IntegerSize, DecimalSize>(a) - b; } template<int IntegerSize, int DecimalSize> inline BigDecimal<IntegerSize, DecimalSize> operator*(const int& a, BigDecimal<IntegerSize, DecimalSize> b) { return BigDecimal<IntegerSize, DecimalSize>(a) * b; } template<int IntegerSize, int DecimalSize> inline BigDecimal<IntegerSize, DecimalSize> operator/(const int& a, BigDecimal<IntegerSize, DecimalSize> b) { return BigDecimal<IntegerSize, DecimalSize>(a) / b; } template<int IntegerSize, int DecimalSize> ostream &operator<<(ostream &os, BigDecimal<IntegerSize, DecimalSize> a) { os << a.toString(os.precision()); return os; } template<int IntegerSize, int DecimalSize> istream &operator>>(istream &is, BigDecimal<IntegerSize, DecimalSize> &a) { string str; is >> str; a = BigDecimal<IntegerSize, DecimalSize>(str); return is; } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> sin(BigDecimal<IntegerSize, DecimalSize> x) { BigDecimal<IntegerSize, DecimalSize> res = 0, xx = - x * x; for (int i = 1; ; i += 2) { x /= max(i * (i - 1), 1); if (x.equals(0)) break; res += x; x *= xx; } return res; } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> cos(BigDecimal<IntegerSize, DecimalSize> x) { BigDecimal<IntegerSize, DecimalSize> res = 0, xx = - x * x; x = 1; for (int i = 0; ; i += 2) { x /= max(i * (i - 1), 1); if (x.equals(0)) break; res += x; x *= xx; } return res; } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> tan(const BigDecimal<IntegerSize, DecimalSize> &x) { return sin(x) / cos(x); } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> asin(BigDecimal<IntegerSize, DecimalSize> x) { if (abs(x) > 1) throw "out of domain"; if (x > 1 / sqrt(BigDecimal<IntegerSize, DecimalSize>(2))) return (pi<IntegerSize, DecimalSize>() >> 1) - asin(sqrt(1 - x * x)); if (x < -1 / sqrt(BigDecimal<IntegerSize, DecimalSize>(2))) return -(pi<IntegerSize, DecimalSize>() >> 1) + asin(sqrt(1 - x * x)); BigDecimal<IntegerSize, DecimalSize> res = 0, xx = x * x >> 2; for (int i = 0; ; ++i) { x *= max(i * 2 * (i * 2 - 1), 1); x /= max(i * i, 1); auto add = x / (i * 2 + 1); if (add.equals(0)) break; res += add; x *= xx; } return res; } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> acos(const BigDecimal<IntegerSize, DecimalSize> &x) { return (pi<IntegerSize, DecimalSize>() >> 1) - asin(x); } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> atan(BigDecimal<IntegerSize, DecimalSize> x) { if (x.isMinus()) return -atan(-x); if (abs(x) > sqrt(2) + 1) return (pi<IntegerSize, DecimalSize>() >> 1) - atan(1 / x); if (abs(x) > sqrt(2) - 1) return (pi<IntegerSize, DecimalSize>() >> 2) + atan((x - 1) / (x + 1)); BigDecimal<IntegerSize, DecimalSize> res = 0, xx = - x * x; for (int i = 1; ; i += 2) { auto add = x / i; if (add.equals(0)) break; res += add; x *= xx; } return res; } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> atan2(const BigDecimal<IntegerSize, DecimalSize> &y, const BigDecimal<IntegerSize, DecimalSize> &x) { if (x == 0) { if (y > 0) return pi<IntegerSize, DecimalSize>() / 2; if (y < 0) return -pi<IntegerSize, DecimalSize>() / 2; throw "origin can't define argument"; } if (x.isPlus()) return atan(y / x); if (y.isPlus()) return atan(y / x) + pi<IntegerSize, DecimalSize>(); return atan(y / x) - pi<IntegerSize, DecimalSize>(); } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> sinh(BigDecimal<IntegerSize, DecimalSize> x) { BigDecimal<IntegerSize, DecimalSize> res = 0, xx = x * x; for (int i = 1; ; i += 2) { x /= max(i * (i - 1), 1); if (x.equals(0)) break; res += x; x *= xx; } return res; } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> cosh(BigDecimal<IntegerSize, DecimalSize> x) { BigDecimal<IntegerSize, DecimalSize> res = 0, xx = x * x; x = 1; for (int i = 0; ; i += 2) { x /= max(i * (i - 1), 1); if (x.equals(0)) break; res += x; x *= xx; } return res; } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> tanh(const BigDecimal<IntegerSize, DecimalSize> &x) {return sinh(x) / cosh(x);} template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> exp(const BigDecimal<IntegerSize, DecimalSize> &x) { BigDecimal<IntegerSize, DecimalSize> res = 0, xx = 1; for (int i = 0; ; ++i) { xx /= max(i, 1); if (xx.equals(0)) break; res += xx; xx *= x; } return res; } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> log(const BigDecimal<IntegerSize, DecimalSize> &x) { BigDecimal<IntegerSize, DecimalSize> y = log(x.toDouble()); BigDecimal<IntegerSize, DecimalSize> z = x / exp(y); BigDecimal<IntegerSize, DecimalSize> a = (z - 1) / (z + 1); BigDecimal<IntegerSize, DecimalSize> res = 0, b = a, aa = a * a; for (int i = 1; ; i += 2) { if (b.equals(0)) break; res += b / i; b *= aa; } return y + res * 2; } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> log10(const BigDecimal<IntegerSize, DecimalSize> &x) { return log(x) / log(BigDecimal<IntegerSize, DecimalSize>(10)); } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> pow(const BigDecimal<IntegerSize, DecimalSize> &x, const BigDecimal<IntegerSize, DecimalSize> &y) { if (x.isMinus()) { if (floor(y) == y) return floor(y).d[DecimalSize] % 2 ? -pow(-x, floor(y)) : pow(-x, floor(y)); throw "power of negative number"; } return exp(y * log(x)); } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> sqrt(const BigDecimal<IntegerSize, DecimalSize> &x) { BigDecimal<IntegerSize, DecimalSize> r = 1 / sqrt(x.toDouble()); for (int i = 0; i < 7; ++i) r *= (3 - x * r * r) >> 1; return BigDecimal<IntegerSize, DecimalSize>(1) / r; } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> abs(const BigDecimal<IntegerSize, DecimalSize> &x) { return x.isPlus() ? x : -x; } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> ceil(const BigDecimal<IntegerSize, DecimalSize> &x) { if (x.isMinus()) return -floor(-x); auto f = floor(x); return f == x ? f : x + 1; } template<int IntegerSize, int DecimalSize> BigDecimal<IntegerSize, DecimalSize> floor(BigDecimal<IntegerSize, DecimalSize> x) { if (x.isMinus()) return -ceil(-x); x += BigDecimal<IntegerSize, DecimalSize>::EPSILON; for (int i = 0; i < DecimalSize; ++i) x.d[i] = 0; return x; } int main() { BigDecimal<> v, t; cin >> v >> t; cout << (int)((v * t).toDouble()) << endl; }