結果

問題 No.515 典型LCP
ユーザー satanicsatanic
提出日時 2017-05-05 23:56:08
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 8,221 bytes
コンパイル時間 2,118 ms
コンパイル使用メモリ 154,472 KB
実行使用メモリ 230,244 KB
最終ジャッジ日時 2024-09-14 09:28:41
合計ジャッジ時間 6,772 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 WA -
testcase_03 AC 2 ms
6,948 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 TLE -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

// need
#include <iostream>
#include <algorithm>

// data structure
#include <bitset>
//#include <list>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <utility>
#include <vector>
//#include <array>
//#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <complex>
//#include <deque>
#include<valarray>

// stream
//#include <istream>
//#include <sstream>
//#include <ostream>

// etc
#include <cassert>
#include <functional>
#include <iomanip>
//#include <typeinfo>
#include <chrono>
#include <random>
#include <numeric>

#define INIT std::ios::sync_with_stdio(false);std::cin.tie(0);
#define VAR(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__);
template<typename T> void MACRO_VAR_Scan(T& t) { std::cin >> t; }
template<typename First, typename...Rest>void MACRO_VAR_Scan(First& first, Rest&...rest) { std::cin >> first; MACRO_VAR_Scan(rest...); }
#define VEC_ROW(type, n, ...)std::vector<type> __VA_ARGS__;MACRO_VEC_ROW_Init(n, __VA_ARGS__); for(int i=0; i<n; ++i){MACRO_VEC_ROW_Scan(i, __VA_ARGS__);}
template<typename T> void MACRO_VEC_ROW_Init(int n, T& t) { t.resize(n); }
template<typename First, typename...Rest>void MACRO_VEC_ROW_Init(int n, First& first, Rest&...rest) { first.resize(n); MACRO_VEC_ROW_Init(n, rest...); }
template<typename T> void MACRO_VEC_ROW_Scan(int p, T& t) { std::cin >> t[p]; }
template<typename First, typename...Rest>void MACRO_VEC_ROW_Scan(int p, First& first, Rest&...rest) { std::cin >> first[p]; MACRO_VEC_ROW_Scan(p, rest...); }
#define OUT(d) std::cout<<d;
#define FOUT(n, d) std::cout<<std::fixed<<std::setprecision(n)<<d;
#define SOUT(n, c, d) std::cout<<std::setw(n)<<std::setfill(c)<<d;
#define SP std::cout<<" ";
#define TAB std::cout<<"\t";
#define BR std::cout<<"\n";
#define ENDL std::cout<<std::endl;
#define FLUSH std::cout<<std::flush;
#define VEC(type, c, n) std::vector<type> c(n);for(auto& i:c)std::cin>>i;
#define MAT(type, c, m, n) std::vector<std::vector<type>> c(m, std::vector<type>(n));for(auto& r:c)for(auto& i:r)std::cin>>i;
#define ALL(a) (a).begin(),(a).end()
#define FOR(i, a, b) for(int i=(a);i<(b);++i)
#define RFOR(i, a, b) for(int i=(b)-1;i>=(a);--i)
#define REP(i, n) for(int i=0;i<int(n);++i)
#define RREP(i, n) for(int i=(n)-1;i>=0;--i)
#define FORLL(i, a, b) for(ll i=ll(a);i<ll(b);++i)
#define RFORLL(i, a, b) for(ll i=ll(b)-1;i>=ll(a);--i)
#define REPLL(i, n) for(ll i=0;i<ll(n);++i)
#define RREPLL(i, n) for(ll i=ll(n)-1;i>=0;--i)
#define PAIR std::pair<int, int>
#define PAIRLL std::pair<ll, ll>
#define IN(a, x, b) (a<=x && x<b)
#define SHOW(d) {std::cerr << #d << "\t:" << d << "\n";}
#define SHOWVECTOR(v) {std::cerr << #v << "\t:";for(const auto& xxx : v){std::cerr << xxx << " ";}std::cerr << "\n";}
#define SHOWVECTOR2(v) {std::cerr << #v << "\t:\n";for(const auto& xxx : v){for(const auto& yyy : xxx){std::cerr << yyy << " ";}std::cerr << "\n";}}
#define SHOWPAIR(p) {std::cerr << #p << "\t:(" << p.first << ",\t" << p.second << ")\n";}
#define SHOWPAIRVECTOR2(v) {std::cerr << #v << "\t:\n";for(const auto& xxx : v){for(const auto& yyy : xxx){std::cerr<<'('<<yyy.first<<", "<<yyy.second<<") ";}std::cerr << "\n";}}
#define SHOWPAIRVECTOR(v) {for(const auto& xxx:v){std::cerr<<'('<<xxx.first<<", "<<xxx.second<<") ";}std::cerr<<"\n";}
#define SHOWQUEUE(a) {std::queue<decltype(a.front())> tmp(a);std::cerr << #a << "\t:";for(int i=0; i<static_cast<int>(a.size()); ++i){std::cerr << tmp.front() << "\n";tmp.pop();}std::cerr << "\n";}
template<typename T> inline T CHMAX(T& a, const T b) { return a = (a < b) ? b : a; }
template<typename T> inline T CHMIN(T& a, const T b) { return a = (a > b) ? b : a; }
#define EXCEPTION(msg) throw std::string("Exception : " msg " [ in ") + __func__ + " : " + std::to_string(__LINE__) + " lines ]"
#define TRY(cond, msg) try {if (cond) EXCEPTION(msg);}catch (std::string s) {std::cerr << s << std::endl;}
void CHECKTIME(std::function<void()> f) { auto start = std::chrono::system_clock::now(); f(); auto end = std::chrono::system_clock::now(); auto res = std::chrono::duration_cast<std::chrono::nanoseconds>((end - start)).count(); std::cerr << "[Time:" << res << "ns  (" << res / (1.0e9) << "s)]\n"; }

//#define int ll
using ll = long long;
using ull = unsigned long long;
constexpr int INFINT = 1 << 30;                          // 1.07x10^ 9
constexpr int INFINT_LIM = (1LL << 31) - 1;              // 2.15x10^ 9
constexpr ll INFLL = 1LL << 60;                          // 1.15x10^18
constexpr ll INFLL_LIM = (1LL << 62) - 1 + (1LL << 62);  // 9.22x10^18
constexpr double EPS = 1e-7;
constexpr int MOD = 1000000007;
constexpr double PI = 3.141592653589793238462643383279;

// write [ LCA lca(g, root); ] when using this snippet.
class LCA {
private:
	const std::vector<std::vector<int>>& graph; // graph's list expression
	int root;
	int n; // the number of nodes
	int log2n; // = floor(log2(n))
	std::vector<std::vector<int>> parent; // parent[x][v] = a parent(above 2^x) of v (nonexistence -> -1)
	std::vector<int> depth; // the depth of each node

public:
	LCA(const std::vector<std::vector<int>>& graph, int root) :
		graph(graph), root(root), n(graph.size()),
		log2n(std::floor(std::log2(n) + 1)),
		parent(log2n, std::vector<int>(n, 0)), depth(n, 0)
	{
		init();
	}

	// Check the depth of each node(node "v" -> parent is "p", depth is "d")
	void dfs(int v, int p, int d) {
		std::stack<int> stack;
		stack.push(v);
		parent[0][v] = p;
		depth[v] = d;
		while (!stack.empty()) {
			int now = stack.top(); stack.pop();
			for (int i = 0; i < graph[now].size(); ++i) {
				int to = graph[now][i];
				if (to == parent[0][now]) continue;
				parent[0][to] = now;
				depth[to] = depth[now] + 1;
				stack.push(to); // Check each child of v
			}
		}
	}

	// Initialize
	void init() {
		// Initialize "parent[0]" and "depth"
		dfs(root, -1, 0);

		// Initialize "parent"
		for (int k = 0; k < log2n - 1; ++k) {
			for (int v = 0; v < n; ++v) {
				if (parent[k][v] < 0) { // If parent above 2^k of v is nonexistence
					parent[k + 1][v] = -1;
				}
				else {
					parent[k + 1][v] = parent[k][parent[k][v]];
				}
			}
		}
	}

	// Find LCA of (u, v)
	int lca(int u, int v) {
		// go up parent while depth of u and v is same
		if (depth[u] > depth[v]) std::swap(u, v);
		for (int k = 0; k < log2n; ++k) {
			if ((depth[v] - depth[u]) >> k & 1) {
				v = parent[k][v]; // go up to 2^k if k-th binary is 1
			}
		}

		if (u == v) return u; // this case is that v is in u's subtree

		// Find LCA by binary searching
		for (int k = log2n - 1; k >= 0; --k) {
			if (parent[k][u] != parent[k][v]) {
				u = parent[k][u];
				v = parent[k][v];
			}
		}
		return parent[0][u];
	}
};

struct Node {
	char pre, now;
	int p;
	Node() {}
	Node(int p, char pre, char now) : p(p), pre(pre), now(now) {}
	bool operator<(const Node& r) const {
		if (p == r.p) {
			if (now == r.now) return pre < r.pre;
			return now < r.now;
		}
		return p < r.p;
	}
};

signed main() {
	INIT;
	VAR(int, n);
	VEC(std::string, s, n);
	VAR(int, m, x, d);
	std::vector<int> ii(m), jj(m);
	REP(k, m) {
		ii[k] = (x / (n - 1));
		jj[k] = (x % (n - 1));
		if (ii[k] > jj[k]) std::swap(ii[k], jj[k]);
		else ++jj[k];
		x = (x + d) % (n * (n - 1));
	}
	std::map<Node, int> map;
	std::map<int, Node> inv;
	std::vector<std::vector<int>> g;
	map[Node(-1, ' ', ' ')] = 0;
	inv[0] = Node(-1, ' ', ' ');
	int p = 1;
	REP(i, n) {
		REP(j, s[i].size()) {
			char pre = (j == 0) ? ' ' : s[i][j - 1];
			if (map.find(Node(j, pre, s[i][j])) == map.end()) {
				map[Node(j, pre, s[i][j])] = p;
				inv[p++] = Node(j, pre, s[i][j]);
				g.resize(p);
				int v = map[Node(j, pre, s[i][j])];
				char pre2 = (j <= 1) ? ' ' : s[i][j - 2];

				Node tmp = (j == 0) ? Node(-1, ' ', ' ') : Node(j - 1, pre2, pre);
				int u = map[tmp];
				g[v].emplace_back(u);
				g[u].emplace_back(v);
			}
		}
	}
	g.resize(map.size());
	LCA lca(g, 0);
	int ans = 0;
	REP(i, m) {
		auto& s1(s[ii[i]]);
		char c1 = (s1.size() == 1) ? ' ' : s1[s1.size() - 2];
		auto& s2(s[jj[i]]);
		char c2 = (s2.size() == 1) ? ' ' : s2[s2.size() - 2];
		int v = lca.lca(map[Node(s1.size() - 1, c1, *s1.rbegin())], map[Node(s2.size() - 1, c2, *s2.rbegin())]);
		ans += inv[v].p + 1;
	}
	OUT(ans)BR;
	return 0;
}
0