結果

問題 No.30 たこやき工場
ユーザー PachicobuePachicobue
提出日時 2017-06-18 20:14:15
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 3 ms / 5,000 ms
コード長 8,932 bytes
コンパイル時間 2,243 ms
コンパイル使用メモリ 180,976 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-12-21 05:26:22
合計ジャッジ時間 2,591 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 1 ms
6,816 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 2 ms
6,820 KB
testcase_09 AC 3 ms
6,816 KB
testcase_10 AC 3 ms
6,816 KB
testcase_11 AC 2 ms
6,820 KB
testcase_12 AC 1 ms
6,816 KB
testcase_13 AC 2 ms
6,816 KB
testcase_14 AC 2 ms
6,820 KB
testcase_15 AC 2 ms
6,816 KB
testcase_16 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

#define FOR(i, a, b) for (ll i = (a); i < (b); i++)
#define RFOR(i, a, b) for (ll i = (b)-1; i >= (a); i--)
#define rep(i, n) for (ll i = 0; i < (n); i++)
#define rep1(i, n) for (ll i = 1; i <= (n); i++)
#define rrep(i, n) for (ll i = (n)-1; i >= 0; i--)

#define pb push_back
#define mp make_pair
#define fst first
#define snd second
#define show(x) cout << #x << " = " << x << endl
#define chmin(x, y) x = min(x, y)
#define chmax(x, y) x = max(x, y)
#define pii pair<int, int>
#define vi vector<int>

using namespace std;
template <class S, class T>
ostream& operator<<(ostream& o, const pair<S, T>& p)
{
    return o << "(" << p.first << "," << p.second << ")";
}
template <class T>
ostream& operator<<(ostream& o, const vector<T>& vc)
{
    o << "sz = " << vc.size() << endl
      << "[";
    for (const T& v : vc)
        o << v << ",";
    o << "]";
    return o;
}
using ll = long long;
constexpr ll MOD = 1000000007;

template <typename T>
struct Edge {
    Edge(const std::size_t from_, const std::size_t to_, const T cost_) : from{from_}, to{to_}, cost{cost_} {}
    Edge<T>& operator=(const Edge<T>&) = default;
    std::size_t from;
    std::size_t to;
    T cost;
    bool operator<(const Edge<T>& e) const  //inverse
    {
        return cost != e.cost ? cost > e.cost : to < e.to;
    }
};

template <typename T>
class Graph
{
public:
    Graph(const std::size_t v) : m_v{v}, m_e{0}
    {
        m_table.resize(v);
        m_reversed_table.resize(v);
    }
    void addEdge(const std::size_t from, const std::size_t to, const T cost)
    {
        m_e++;
        m_table[from].push_back(Edge<T>{from, to, cost});
        m_reversed_table[to].push_back(Edge<T>{to, from, cost});
    }

    void TopologocalSort(std::vector<std::size_t>& srt) const
    {
        srt.clear();
        std::vector<bool> used(m_v, false);
        for (std::size_t i = 0; i < m_v; i++) {
            dfs_topo(i, used, srt);
        }
        std::reverse(srt.begin(), srt.end());
    }

    std::size_t SCC(std::vector<std::size_t>& cmp) const
    {
        assert(cmp.size() == m_v);
        for (std::size_t i = 0; i < m_v; i++) {
            cmp[i] = 0;
        }

        std::vector<std::size_t> st;
        std::vector<bool> used(m_v, false);
        for (std::size_t i = 0; i < m_v; i++) {
            if (not used[i]) {
                dfs1_scc(i, st, used);
            }
        }

        for (std::size_t i = 0; i < m_v; i++) {
            used[i] = false;
        }
        std::size_t comp = 0;
        for (std::size_t i = 0; i < st.size(); i++) {
            const std::size_t s = st[st.size() - i - 1];
            if (not used[s]) {
                dfs2_scc(s, comp++, cmp, used);
            }
        }
        return comp;
    }

    bool BellmanFord(const std::size_t s, std::vector<T>& d) const
    {
        assert(s < m_v);
        assert(d.size() == m_v);
        for (std::size_t i = 0; i < m_v; i++) {
            d[i] = INF;
        }
        d[s] = 0;
        bool no_negative_loop = true;
        for (std::size_t i = 0; i < m_v; i++) {
            for (std::size_t v = 0; v < m_v; v++) {
                if (d[v] != INF) {
                    for (const auto& e : m_table[v]) {
                        if (d[e.to] > d[e.from] + e.cost) {
                            d[e.to] = d[v] + e.cost;
                            if (i == m_v - 1) {
                                d[e.to] = -INF;  // Confirm " -INF < min(possible_cost) * V "
                                no_negative_loop = false;
                            }
                        }
                    }
                }
            }
        }
        return no_negative_loop;
    }

    void Dijkstra(const std::size_t s, std::vector<T>& d) const
    {
        assert(s < m_v);
        assert(d.size() == m_v);
        using P = std::pair<T, std::size_t>;
        std::priority_queue<P, std::vector<P>, std::greater<P>> q;
        for (std::size_t i = 0; i < m_v; i++) {
            d[i] = INF;
        }
        d[s] = 0;
        q.push(std::make_pair(0, s));
        while (not q.empty()) {
            const P& p = q.top();
            const T cost = p.first;
            const std::size_t v = p.second;
            q.pop();
            if (d[v] < cost) {
                continue;
            }
            for (const auto& e : m_table[v]) {
                if (d[e.to] > d[v] + e.cost) {
                    d[e.to] = d[v] + e.cost;
                    q.push(std::make_pair(d[e.to], e.to));
                }
            }
        }
    }

    void WarshallFloyd(std::vector<std::vector<T>>& d) const
    {
        assert(d.size() == m_v);
        for (std::size_t i = 0; i < m_v; i++) {
            assert(d[i].size() == m_v);
            for (std::size_t j = 0; j < m_v; j++) {
                if (i == j) {
                    d[i][j] = 0;
                } else {
                    d[i][j] = INF;
                }
            }
            for (const auto& e : m_table[i]) {
                d[i][e.to] = std::min(e.cost, d[i][e.to]);  // For doubled-link
            }
        }
        for (std::size_t k = 0; k < m_v; k++) {
            for (std::size_t i = 0; i < m_v; i++) {
                for (std::size_t j = 0; j < m_v; j++) {
                    if (d[i][j] > d[i][k] + d[k][j] and d[i][k] < INF and d[k][j] < INF) {
                        d[i][j] = d[i][k] + d[k][j];
                    }
                }
            }
        }
    }

    void restorePath(const std::size_t s, const std::size_t t, const std::vector<T>& d, std::vector<std::size_t>& path) const
    {
        assert(s < m_v);
        assert(t < m_v);
        assert(d.size() == m_v);
        path.clear();
        std::size_t pos = t;
        path.push_back(t);
        while (pos != s) {
            for (const auto& e : m_reversed_table[pos]) {
                if (d[e.to] + e.cost == d[pos]) {
                    pos = e.to;
                    break;
                }
            }
            path.push_back(pos);
        }
        std::reverse(path.begin(), path.end());
    }

    std::size_t getV() const
    {
        return m_v;
    }

    std::size_t getE() const
    {
        return m_e;
    }

    const std::vector<std::vector<Edge<T>>>& getEdge() const
    {
        return m_table;
    }

    std::vector<std::vector<Edge<T>>>& getEdge()
    {
        return m_table;
    }

    const std::vector<std::vector<std::size_t>>& getReversedEdge() const
    {
        return m_reversed_table;
    }

    std::vector<std::vector<std::size_t>>& getReversedEdge()
    {
        return m_reversed_table;
    }

    static constexpr T INF = std::numeric_limits<T>::max() / 100;

private:
    void dfs_topo(const std::size_t s, std::vector<bool>& used, std::vector<std::size_t>& srt) const
    {
        assert(s < m_v);
        assert(used.size() == m_v);
        if (not used[s]) {
            used[s] = true;
            for (const auto& e : m_table[s]) {
                dfs_topo(e.to, used, srt);
            }
            srt.push_back(s);
        }
    }

    void dfs1_scc(const std::size_t s, std::vector<std::size_t>& st, std::vector<bool>& used) const
    {
        assert(s < m_v);
        assert(used.size() == m_v);
        used[s] = true;
        for (const auto& e : m_table[s]) {
            if (not used[e.to]) {
                dfs1_scc(e.to, st, used);
            }
        }
        st.push_back(s);
    }

    void dfs2_scc(const std::size_t s, const std::size_t index, std::vector<std::size_t>& cmp, std::vector<bool>& used) const
    {
        assert(s < m_v);
        assert(index < m_v);
        assert(cmp.size() == m_v);
        cmp[s] = index;
        used[s] = true;
        for (const auto& e : m_reversed_table[s]) {
            if (not used[e.to]) {
                dfs2_scc(e.to, index, cmp, used);
            }
        }
    };

    const std::size_t m_v;
    std::size_t m_e;
    std::vector<std::vector<Edge<T>>> m_table;
    std::vector<std::vector<Edge<T>>> m_reversed_table;
};

int main()
{
    std::size_t N;
    std::size_t M;
    cin >> N >> M;
    Graph<std::size_t> g(N);
    Graph<std::size_t> revg(N);
    rep(i, M)
    {
        std::size_t p, q, r;
        cin >> p >> q >> r;
        p--, r--;
        g.addEdge(p, r, q);
        revg.addEdge(r, p, q);
    }

    vector<int> isleaf(N, false);
    vector<int> dp(N, 0);

    rep(i, N)
    {
        if (revg.getEdge()[i].empty()) {
            isleaf[i] = true;
        }
    }
    vector<std::size_t> srt(N);
    g.TopologocalSort(srt);
    //show(srt);
    dp[N - 1] = 1;
    for (int i = N - 1; i >= 0; i--) {
        for (const auto& e : revg.getEdge()[srt[i]]) {
            dp[e.to] += dp[srt[i]] * e.cost;
        }
    }
    for (int i = 0; i < N - 1; i++) {
        if (isleaf[i]) {
            cout << dp[i] << endl;
        } else {
            cout << 0 << endl;
        }
    }

    return 0;
}
0