結果
| 問題 |
No.470 Inverse S+T Problem
|
| コンテスト | |
| ユーザー |
🐬hec
|
| 提出日時 | 2017-07-14 02:34:18 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 4,520 bytes |
| コンパイル時間 | 2,402 ms |
| コンパイル使用メモリ | 189,384 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-12-22 13:44:11 |
| 合計ジャッジ時間 | 3,727 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 26 RE * 1 |
ソースコード
#include <bits/stdc++.h>
#define _overload(_1,_2,_3,name,...) name
#define _rep(i,n) _range(i,0,n)
#define _range(i,a,b) for(int i=int(a);i<int(b);++i)
#define rep(...) _overload(__VA_ARGS__,_range,_rep,)(__VA_ARGS__)
#define _rrep(i,n) _rrange(i,n,0)
#define _rrange(i,a,b) for(int i=int(a)-1;i>=int(b);--i)
#define rrep(...) _overload(__VA_ARGS__,_rrange,_rrep,)(__VA_ARGS__)
#define _all(arg) begin(arg),end(arg)
#define uniq(arg) sort(_all(arg)),(arg).erase(unique(_all(arg)),end(arg))
#define getidx(ary,key) lower_bound(_all(ary),key)-begin(ary)
#define clr(a,b) memset((a),(b),sizeof(a))
#define bit(n) (1LL<<(n))
#define popcount(n) (__builtin_popcountll(n))
using namespace std;
template<class T>bool chmax(T &a, const T &b) { return (a < b) ? (a = b, 1) : 0;}
template<class T>bool chmin(T &a, const T &b) { return (b < a) ? (a = b, 1) : 0;}
using ll = long long;
using R = long double;
const R EPS = 1e-9L; // [-1000,1000]->EPS=1e-8 [-10000,10000]->EPS=1e-7
inline int sgn(const R& r) {return (r > EPS) - (r < -EPS);}
inline R sq(R x) {return sqrt(max(x, 0.0L));}
const int dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};
const int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};
// Problem Specific Parameter:
#define error(args...) { vector<string> _debug = split(#args, ',');err(begin(_debug), args);}
vector<string> split(const string& s, char c) {
vector<string> v; stringstream ss(s); string x;
while (getline(ss, x, c)) v.emplace_back(x);
return move(v);
}
void err(vector<string>::iterator it) {cerr << endl;}
template<typename T, typename... Args> void err(vector<string>::iterator it, T a, Args... args) {
cerr << it -> substr((*it)[0] == ' ', it -> length()) << " = " << a << " ", err(++it, args...);
}
using edge = struct {int to;};
using G = vector<vector<edge>>;
void add_edge(G &graph, int from, int to) {
graph[from].push_back({to});
}
// x&1 == 1 True
// x&1 == 0 False
void closure_or(G &graph, int a, int b) {
add_edge(graph, a ^ 1, b);
add_edge(graph, b ^ 1, a);
}
auto strongly_connected_components(const G& graph) {
const int n = graph.size();
vector<int> used(n, 0), order, scc(n, 0);
auto dfs = [&](int v) {
auto func = [&](int v, auto func)->void{
used[v] = true;
for (auto &e : graph[v]) if (!used[e.to]) func(e.to, func);
order.push_back(v);
};
return func(v, func);
};
rep(v, n) if (used[v] == false) dfs(v);
G rgraph(n);
rep(v, n) for (auto &e : graph[v]) add_edge(rgraph, e.to, v);
int total = 0;
auto rdfs = [&](int v) {
auto func = [&](int v, auto func)->void{
used[v] = true, scc[v] = total;
for (auto &e : rgraph[v]) if (!used[e.to]) func(e.to, func);
};
return func(v, func);
};
used.assign(2 * n, false);
reverse(begin(order), end(order));
for (auto &v : order) if (used[v] == false) rdfs(v),total++;
return scc;
}
vector<int> get_variable(G &graph) {
const int n = graph.size() / 2;
vector<int> ret(n, 0);
vector<int> scc;
scc = strongly_connected_components(graph);
rep(i, n) {
if (scc[2 * i] == scc[2 * i + 1])
ret[0] = -1;
else
ret[i] = (scc[2 * i] < scc[2 * i + 1]);
}
return ret;
}
string s[1010];
int main(void) {
int n;
cin >> n;
const int limit = 52;
if (n > limit * limit) {
puts("Impossible");
return 0;
}
rep(i, n) cin >> s[i];
G graph(2 * n);
// F a | bc
// T ab | c
rep(i, n)rep(j, i) {
// F F
if (s[i].substr(0, 1) == s[j].substr(0, 1) or s[i].substr(1, 2) == s[j].substr(1, 2)) {
//error(i, "F", j, "F");
closure_or(graph, 2 * i + 1, 2 * j + 1);
}
// T F
if (s[i].substr(2, 1) == s[j].substr(0, 1) or s[i].substr(0, 2) == s[j].substr(1, 2)) {
//error(i, "T", j, "F");
closure_or(graph, 2 * i, 2 * j + 1);
}
// F T
if (s[i].substr(0, 1) == s[j].substr(2, 1) or s[i].substr(1, 2) == s[j].substr(0, 2)) {
//error(i, "F", j, "T");
closure_or(graph, 2 * i + 1, 2 * j);
}
// T T
if (s[i].substr(2, 1) == s[j].substr(2, 1) or s[i].substr(0, 2) == s[j].substr(0, 2)) {
//error(i, "T", j, "T");
closure_or(graph, 2 * i, 2 * j);
}
}
vector<int> ret = get_variable(graph);
//cerr << ret.size() << endl;
if (ret[0] == -1) {
puts("Impossible");
return 0;
}
rep(i, n) {
//error(ret[i]);
if (ret[i])
cout << s[i][0] << s[i][1] << " " << s[i][2] << endl;
else
cout << s[i][0] << " " << s[i][1] << s[i][2] << endl;
}
return 0;
}
🐬hec