結果
| 問題 | No.199 星を描こう |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2017-07-29 06:00:05 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 11,392 bytes |
| コンパイル時間 | 3,386 ms |
| コンパイル使用メモリ | 186,780 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-10-10 21:18:50 |
| 合計ジャッジ時間 | 3,598 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 25 |
ソースコード
#include <bits/stdc++.h>
#define ll long long
#define INF 1000000005
#define MOD 1000000007
#define EPS 1e-10
#define rep(i,n) for(int i=0;i<(int)n;++i)
#define each(a, b) for(auto (a): (b))
#define all(v) (v).begin(),(v).end()
#define fi first
#define se second
#define pb push_back
#define show(x) cout <<#x<<" = "<<(x)<<endl
#define spair(p) cout <<#p<<": "<<p.fi<<" "<<p.se<<endl
#define svec(v) cout<<#v<<":";rep(i,v.size())cout<<" "<<v[i];cout<<endl
#define sset(s) cout<<#s<<":";each(i,s)cout <<" "<<i;cout<<endl
using namespace std;
typedef complex<double> C;
typedef pair<int,int>P;
const double PI = 4*atan(1.0);
namespace std
{
bool operator < (const C a, const C b) {
return a.real() != b.real() ? a.real() < b.real() : a.imag() < b.imag();
}
}
struct L : public vector<C>
{
L(const C a, const C b) {
push_back(a); push_back(b);
}
};
bool eq(double a,double b)
{
return (-EPS<a-b&&a-b<EPS);
}
bool eq(C c1,C c2)
{
return (eq(c1.real(),c2.real()) && eq(c1.imag(),c2.imag()));
}
//条件付きsqrt
double Sqrt(double x)
{
if(x<0) return 0;
else return sqrt(x);
}
//正規化
C normalize(C c)
{
return c / abs(c);
}
//角度(rad)
double getarg(C a,C b){
return arg(b*conj(a));
}
//外積
double cross(const C a, const C b)
{
return imag(conj(a)*b);
}
//内積
double dot(const C a, const C b)
{
return real(conj(a)*b);
}
int ccw(C a, C b, C c)
{
b -= a; c -= a;
if (cross(b, c) > 0) return +1; // counter clockwise
if (cross(b, c) < 0) return -1; // clockwise
if (dot(b, c) < 0) return +2; // c--a--b on line
if (norm(b) < norm(c)) return -2; // a--b--c on line
return 0;
}
//直線どうしの交差判定(同一直線はTrue)
bool intersectLL(const L &l, const L &m)
{
return abs(cross(l[1]-l[0], m[1]-m[0])) > EPS || abs(cross(l[1]-l[0], m[0]-l[0])) < EPS;
}
//直線と線分の交差判定(一点共有も交差と判定)
bool intersectLS(const L &l, const L &s)
{
return cross(l[1]-l[0], s[0]-l[0]) * cross(l[1]-l[0], s[1]-l[0]) < EPS;
}
//直線と点の交差(共有)判定
bool intersectLP(const L &l, const C p)
{
return abs(cross(l[1]-p, l[0]-p)) < EPS;
}
//線分どうしの交差判定(一点共有も交差と判定)
bool intersectSS(const L &s, const L &t)
{
return ccw(s[0],s[1],t[0])*ccw(s[0],s[1],t[1]) <= 0 && ccw(t[0],t[1],s[0])*ccw(t[0],t[1],s[1]) <= 0;
}
//線分と点の交差(共有)判定
bool intersectSP(const L &s, const C p)
{
return abs(s[0]-p)+abs(s[1]-p)-abs(s[1]-s[0]) < EPS;
}
//点pを直線l上に射影
C projection(const L &l, const C p)
{
double t = dot(p-l[0], l[0]-l[1]) / norm(l[0]-l[1]);
return l[0] + t*(l[0]-l[1]);
}
//点pを直線lを軸として対称移動
C reflection(const L &l, const C p)
{
return p + (projection(l, p) - p)*2.0;
}
//点と直線の距離
double distanceLP(const L &l, const C p)
{
return abs(p - projection(l, p));
}
//直線と直線の距離
double distanceLL(const L &l, const L &m)
{
return intersectLL(l, m) ? 0 : distanceLP(l, m[0]);
}
//直線と線分の距離
double distanceLS(const L &l, const L &s)
{
if (intersectLS(l, s)) return 0;
return min(distanceLP(l, s[0]), distanceLP(l, s[1]));
}
//線分と点の距離
double distanceSP(const L &s, const C p)
{
const C r = projection(s, p);
if (intersectSP(s, r)) return abs(r - p);
return min(abs(s[0] - p), abs(s[1] - p));
}
//線分と線分の距離
double distanceSS(const L &s, const L &t)
{
if (intersectSS(s, t)) return 0;
return min(min(distanceSP(s, t[0]), distanceSP(s, t[1])),min(distanceSP(t, s[0]), distanceSP(t, s[1])));
}
//直線および線分の交点
C crosspointLL(const L &l, const L &m)
{
double A = cross(l[1] - l[0], m[1] - m[0]);
double B = cross(l[1] - l[0], l[1] - m[0]);
//同一直線のとき
if(abs(A) < EPS && abs(B) < EPS){
return m[0];
}
return m[0] + B / A * (m[1] - m[0]);
}
//円と直線の交点
double gettime(C c1,C c2)
{
return (dot(c1,c2) < 0 ? -1.0 : 1.0 ) * abs(c2) / abs(c1);
}
//円と直線の交点
vector<C> crosspointCL(C c1,double r1,L l)
{
C a=l[0], b=l[1];
vector<C> res;
C base=b-a, target=projection(L(a,b),c1);
double length=abs(base), h=abs(c1-target);
base/=length;
if(r1+EPS<h) return res;
double w=Sqrt(r1*r1-h*h);
double LL=gettime(normalize(b-a),target-a)-w,RR=LL+w*2.0;
res.push_back(a+base*LL);
if(eq(LL,RR)) return res;
res.push_back(a+base*RR);
return res;
}
//円と線分の交点
vector<C> crosspointCS(C c1,double r1,L s)
{
vector<C> tmp=crosspointCL(c1,r1,s);
vector<C> res;
rep(i,tmp.size()){
if(eq(abs(s[1]-s[0]),abs(s[0]-tmp[i])+abs(s[1]-tmp[i]))){
res.push_back(tmp[i]);
}
}
return res;
}
//円どうしの交点
L crosspointCC(const C c1, const double r1, const C c2, const double r2)
{
C a = conj(c2-c1), b = (r2*r2-r1*r1-(c2-c1)*conj(c2-c1)), c = r1*r1*(c2-c1);
C d = b*b-4.0*a*c;
C z1 = (-b+sqrt(d))/(2.0*a)+c1, z2 = (-b-sqrt(d))/(2.0*a)+c1;
return L(z1, z2);
}
//円と多角形の共通部分の面積
double getarea(C c1,double r1,C a,C b)
{
C va=c1-a,vb=c1-b;
double A=abs(va),B=abs(vb);
double f=cross(va,vb),d=distanceSP(L(a,b),c1),res=0;
if(eq(f,0.0)) return 0;
if(A < r1+EPS && B < r1+EPS) return f*0.5;
if(d>r1-EPS) return r1*r1*M_PI*getarg(va,vb)/(2.0*M_PI);
vector<C> u=crosspointCS(c1,r1,L(a,b));
u.insert(u.begin(),a),u.push_back(b);
for(int i=0;i+1<(int)u.size();i++){
res+=getarea(c1,r1,u[i],u[i+1]);
}
return res;
}
double getcrossarea(vector<C> t,C c1,double r1)
{
int n=t.size();
if(n<3) return 0;
double res=0;
rep(i,n){
C a=t[i], b=t[(i+1)%n];
res += getarea(c1,r1,a,b);
}
return res;
}
//凸包を求める
vector<C> convex_hull(vector<C> ps)
{
int n = ps.size(), k = 0;
sort(ps.begin(), ps.end());
vector<C> ch(2*n);
for (int i = 0; i < n; ch[k++] = ps[i++]){
while (k >= 2 && ccw(ch[k-2], ch[k-1], ps[i]) <= 0) k--;
}
for (int i = n-2, t = k+1; i >= 0; ch[k++] = ps[i--]){
while (k >= t && ccw(ch[k-2], ch[k-1], ps[i]) <= 0) k--;
}
ch.resize(k-1);
return ch;
}
//凸性判定
bool isconvex(const vector<C> &ps)
{
rep(i,ps.size()){
if (ccw(ps[(i+ps.size()-1) % ps.size()],ps[i],ps[(i+1) % ps.size()])) return false;
}
return true;
}
//多角形の面積
double area(const vector<C> &ps)
{
double A = 0;
rep(i,ps.size()){
A += cross(ps[i],ps[(i+1) % ps.size()]);
}
return A / 2.0;
}
//凸多角形を直線で切断した時の左側の図形
vector<C> convex_cut(const vector<C> &ps, const L &l)
{
vector<C> Q;
rep(i,ps.size()){
C A = ps[i], B = ps[(i+1)%ps.size()];
if (ccw(l[0], l[1], A) != -1) Q.push_back(A);
if (ccw(l[0], l[1], A)*ccw(l[0], l[1], B) < 0)
Q.push_back(crosspointLL(L(A, B),l));
}
return Q;
}
//点が多角形に包含されているか(0は含まれない,1は辺上,2は含まれる)
int contains(const vector<C>& ps, const C p)
{
bool flag = false;
rep(i,ps.size()) {
C a = ps[i] - p, b = ps[(i+1)%ps.size()] - p;
if (imag(a) > imag(b)) swap(a, b);
if (imag(a) <= 0 && 0 < imag(b)){
if (cross(a, b) < 0) flag = !flag;
}
if (cross(a, b) == 0 && dot(a, b) <= 0) return 1;
}
return flag ? 2 : 0;
}
//凸多角形の直径を求める(キャリパー法)
//maxi,maxjが最遠点対となる
double convex_diameter(const vector<C> &ps)
{
const int n = ps.size();
int is = 0, js = 0;
for (int i = 1; i < n; ++i) {
if (imag(ps[i]) > imag(ps[is])) is = i;
if (imag(ps[i]) < imag(ps[js])) js = i;
}
double maxd = abs(ps[is]-ps[js]);
int i, maxi, j, maxj;
i = maxi = is;
j = maxj = js;
do{
if (cross(ps[(i+1)%ps.size()]-ps[i],ps[(j+1)%ps.size()]-ps[j]) >= 0) j = (j+1) % n;
else i = (i+1) % n;
if (abs(ps[i]-ps[j]) > maxd) {
maxd = abs(ps[i]-ps[j]);
maxi = i; maxj = j;
}
} while (i != is || j != js);
return maxd;
}
bool compyx(C c1,C c2)
{
return c1.imag() != c2.imag() ? c1.imag() < c2.imag() : c1.real() < c2.real();
}
//最近点対を求める
double closest_pair(C *a, int n)
{
if(n<=1) return INF;
int m=n/2;
double x=a[m].real();
double d=min(closest_pair(a,m),closest_pair(a+m,n-m));
inplace_merge(a,a+m,a+n,compyx);
vector<C> b;
rep(i,n){
if(abs(x-a[i].real())>=d) continue;
rep(j,b.size()){
C dp=a[i]-b[b.size()-1-j];
if(dp.imag()>=d) break;
d=min(d,abs(dp));
}
b.push_back(a[i]);
}
return d;
}
double compute_shortest(C *a,int n)
{
sort(a,a+n);
return closest_pair(a,n);
}
//2円の位置関係を示す(返り値は2円の間の共通接線の数)
int getstateCC(C c1,double r1,C c2,double r2)
{
double d=abs(c1-c2);
if(d>r1+r2+EPS)return 4;
if(d>r1+r2-EPS)return 3;
if(d>abs(r1-r2)+EPS)return 2;
if(d>abs(r1-r2)-EPS)return 1;
return 0;
}
//点から円へ接線を引いた時の接点
C gettangentCP_(C c1,double r1,C p,int flg){
C base=c1-p;
double w=Sqrt(norm(base)-r1*r1);
C s=p+base*C(w,r1 * flg)/norm(base)*w;
return s;
}
//点から円への接線
vector<L> gettangentCP(C c1,double r1,C p){
vector<L> res;
C s=gettangentCP_(c1,r1,p,1);
C t=gettangentCP_(c1,r1,p,-1);
//点が円の周上にある場合
if(eq(s,t)){
res.push_back(L(s,s+(c1-p)*C(0,1)));
}else{
res.push_back(L(p,s));
res.push_back(L(p,t));
}
return res;
}
//2円の共通内接線を求める
L getintangent(C c1,double r1,C c2,double r2,double flg)
{
C base=c2-c1;
double w=r1+r2;
double h=Sqrt(norm(base)-w*w);
C k=base*C(w,h*flg)/norm(base);
return L(c1+k*r1,c2-k*r2);
}
//2円の共通外接線を求める
L getouttangent(C c1,double r1,C c2,double r2,double flg)
{
C base=c2-c1;
double h=r2-r1;
double w=Sqrt(norm(base)-h*h);
C k=base*C(w,h*flg)/norm(base)*C(0,flg);
return L(c1+k*r1,c2+k*r2);
}
//2円の共通接線を求める(各直線の2点はそれぞれの円の接点)
vector<L> gettangentCC(C c1,double r1,C c2,double r2)
{
vector<L> res;
double d=abs(c1-c2);
if(d>r1+r2+EPS) res.push_back(getintangent(c1,r1,c2,r2,1));
if(d>r1+r2-EPS) res.push_back(getintangent(c1,r1,c2,r2,-1));
if(d>abs(r1-r2)+EPS) res.push_back(getouttangent(c1,r1,c2,r2,1));
if(d>abs(r1-r2)-EPS) res.push_back(getouttangent(c1,r1,c2,r2,-1));
return res;
}
int main()
{
vector<C> vec;
rep(i,5){
int a,b;
cin >> a >> b;
vec.pb(C(a,b));
}
rep(i,5){
for(int j=i+1;j<5;j++){
for(int k=j+1;k<5;k++){
vector<C> hoge;
hoge.pb(vec[i]),hoge.pb(vec[j]),hoge.pb(vec[k]);
rep(l,5){
if(l != i && l != j && l != k){
if(contains(hoge,vec[l])){
cout << "NO\n";
return 0;
}
}
}
}
}
}
cout << "YES\n";
return 0;
}