結果
| 問題 | No.551 夏休みの思い出(2) |
| コンテスト | |
| ユーザー |
tottoripaper
|
| 提出日時 | 2017-08-02 13:35:06 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 5,491 bytes |
| 記録 | |
| コンパイル時間 | 2,180 ms |
| コンパイル使用メモリ | 198,424 KB |
| 実行使用メモリ | 10,404 KB |
| 最終ジャッジ日時 | 2024-10-11 12:56:28 |
| 合計ジャッジ時間 | 8,956 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 2 |
| other | AC * 27 TLE * 1 -- * 19 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define fst(t) std::get<0>(t)
#define snd(t) std::get<1>(t)
#define thd(t) std::get<2>(t)
using ll = long long;
template <typename T>
T expt(T a, T n, T mod = std::numeric_limits<T>::max());
template <typename T>
T inverse(T n, T mod);
std::tuple<ll,ll,ll> extgcd(ll a, ll b);
ll P, R;
map<ll,ll> inv_map, bsgs_map;
ll n, alpha;
ll table[100000];
vector<tuple<ll,ll,ll>> P1_factors;
struct llMod{
llMod() = default;
llMod(ll n) : n(n) {}
llMod(const llMod&) = default;
llMod& operator=(const llMod&) = default;
operator long long(){return n;}
llMod operator+(const llMod& m) const{
return (n + m.n) % P;
}
llMod operator-() const{
return (P - n) % P;
}
llMod operator*(const llMod& m) const{
return n * m.n % P;
}
llMod operator/(const llMod& m) const{
return n * inverse(m.n, P) % P;
}
llMod operator^(const ll m) const{
return expt(n, m, P);
}
ll n;
};
const int dx[8] = {-1, 1, 0, 0, -1, -1, 1, 1}, dy[8] = {0, 0, -1, 1, -1, 1, -1, 1};
void init();
ll babyStepGiantStep(ll a, ll b, ll p);
ll PohligHellmanPrime(llMod h, llMod generator, ll p, ll e);
ll PohligHellman(llMod h, llMod generator, std::vector<std::tuple<ll,ll,ll>>& factors);
int main(){
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
std::cin >> P >> R;
init();
ll g, s;
tie(g, s, ignore) = extgcd(2ll, P-1);
int Q;
std::cin >> Q;
for(int i=0;i<Q;++i){
ll a, b, c;
std::cin >> a >> b >> c;
ll D = (b * b - 4ll * a * c) % P;
D = D >= 0 ? D : D + P;
ll sq;
if(D == 0){
sq = 0;
}else{
if(bsgs_map.find(D) == bsgs_map.end()){
bsgs_map[D] = PohligHellman((llMod)D, (llMod)R, P1_factors);
}
ll m = bsgs_map[D];
if(m % g != 0){
std::cout << -1ll << std::endl;
continue;
}
ll t = s * (m / g) % (P - 1);
t = t >= 0 ? t : t + (P - 1);
sq = expt(R, t, P);
}
ll den = 2ll * a % P;
if(inv_map.find(den) == inv_map.end()){
inv_map[den] = inverse(den, P);
}
den = inv_map[den];
ll x0 = (-b - sq) * den % P,
x1 = (-b + sq) * den % P;
x0 = x0 >= 0 ? x0 : x0 + P;
x1 = x1 >= 0 ? x1 : x1 + P;
if(x0 > x1){swap(x0, x1);}
if(x0 == x1){
std::cout << x0 << std::endl;
}else{
std::cout << x0 << " " << x1 << std::endl;
}
}
}
void init(){
ll _p = P - 1;
for(ll i=2;i*i<=_p;++i){
ll e = 0, pe = 1ll;
while(_p % i == 0){
++e;
pe *= i;
_p /= i;
}
if(e > 0){P1_factors.emplace_back(i, e, pe);}
}
if(_p > 1){P1_factors.emplace_back(_p, 1, _p);}
}
// solve a^n = b (in F_p)
ll babyStepGiantStep(ll a, ll b, ll p){
ll n = std::floor(std::sqrt(p)), alpha = expt(a, n, p);
std::vector<std::tuple<ll,int>> expos(n);
for(int i=0;i<n;++i){
expos[i] = std::make_tuple(expt(a, 1ll * i, p), i);
}
std::sort(expos.begin(), expos.end());
for(int i=0;n*i<p;++i){
ll v = b * inverse(expt(alpha, 1ll * i, p), p) % p;
auto it = std::lower_bound(expos.begin(), expos.end(), std::make_tuple(v, 0), [](const auto& lhs, const auto& rhs){return std::get<0>(lhs) < std::get<0>(rhs);});
if(it != expos.end() && std::get<0>(*it) == v){
ll c = n * i + std::get<1>(*it);
return c;
}
}
return -1ll;
}
std::tuple<ll,ll,ll> extgcd(ll a, ll b){
if(b == 0){
return std::make_tuple(a, 1ll, 0ll);
}
auto s = extgcd(b, a % b);
return std::make_tuple(fst(s), thd(s), snd(s)-(a/b)*thd(s));
}
template <typename T>
T expt(T a, T n, T mod){
T res = 1;
while(n){
if(n & 1){res = res * a % mod;}
a = a * a % mod;
n >>= 1;
}
return res;
}
template <typename T>
inline T inverse(T n, T mod){
return expt(n, mod-2, mod);
}
// solve generator^x \equiv h
ll PohligHellmanPrime(llMod h, llMod generator, ll p, ll e){
ll x = 0ll;
llMod gamma = generator ^ expt(p, e-1);
for(ll k=0;k<e;++k){
ll _h = ((llMod)1 / (generator ^ x) * h) ^ expt(p, e-1-k);
ll d = babyStepGiantStep(gamma, _h, P);
x = x + expt(p, k) * d;
}
return x;
}
// solve x \equiv ak (mod nk) (k = 1, 2)
// (when gcd(n1, n2) = 1)
tuple<ll,ll> chineseRemainder(ll a1, ll n1, ll a2, ll n2){
ll s, t;
tie(ignore, s, t) = extgcd(n1, n2);
ll pr = n1 * n2, solution = (a2 * s % pr * n1 % pr + a1 * t % pr * n2 % pr) % pr;
if(solution < 0){solution += pr;}
return std::make_tuple(solution, pr);
}
ll PohligHellman(llMod h, llMod generator, std::vector<std::tuple<ll,ll,ll>>& factors){
ll n = P - 1;
ll x = -1ll, modulo = -1ll;
for(const auto& f : factors){
ll q, e, qe;
tie(q, e, qe) = f;
llMod g = generator ^ (n / qe),
_h = h ^ (n / qe);
ll a = PohligHellmanPrime(_h, g, q, e);
if(x == -1ll){x = a; modulo = qe;}
else{
tie(x, modulo) = chineseRemainder(x, modulo, a, qe);
}
}
return x;
}
tottoripaper