結果
| 問題 | No.551 夏休みの思い出(2) |
| コンテスト | |
| ユーザー |
tottoripaper
|
| 提出日時 | 2017-08-08 00:26:25 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
TLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 4,165 bytes |
| 記録 | |
| コンパイル時間 | 2,478 ms |
| コンパイル使用メモリ | 189,648 KB |
| 実行使用メモリ | 6,400 KB |
| 最終ジャッジ日時 | 2024-12-26 16:47:08 |
| 合計ジャッジ時間 | 38,342 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 46 TLE * 1 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define fst(t) std::get<0>(t)
#define snd(t) std::get<1>(t)
#define thd(t) std::get<2>(t)
using ll = long long;
template <typename T>
T expt(T a, T n, T mod = std::numeric_limits<T>::max()){
T res = 1;
while(n){
if(n & 1){res = res * a % mod;}
a = a * a % mod;
n >>= 1;
}
return res;
}
template <typename T>
T inverse(T n, T mod){
return expt(n, mod-2, mod);
}
// extgcd(a, b) = (g, s, t)
// g: GCD of a and b, s, t: a solution of sa + tb = g
template <typename T>
std::tuple<T, T, T> extgcd(T a, T b){
if(b == 0){
return std::make_tuple(a, 1, 0);
}
T g, _s, _t;
std::tie(g, _s, _t) = extgcd(b, a % b);
return std::make_tuple(g, _t, _s - (a/b) * _t);
}
struct QuadradicMod{
int bucket_size, bucket_n;
long long p, g;
std::vector<std::tuple<long long, long long>> expos;
std::vector<long long> invs;
QuadradicMod() = default;
QuadradicMod(long long p, long long g, int bucket_size) : p(p), g(g), bucket_size(bucket_size) {
bucket_n = (p + bucket_size - 1) / bucket_size;
expos = std::vector<std::tuple<long long, long long>>((bucket_size + 1) / 2);
expos[0] = std::make_tuple(1, 0);
{
long long ex = 1;
for(int i=1;i<(bucket_size + 1)/2;++i){
ex = ex * g % p * g % p;
expos[i] = std::make_tuple(ex, i * 2);
}
}
std::sort(expos.begin(), expos.end());
invs = std::vector<long long>(bucket_n);
long long alpha = expt<long long>(g, bucket_size, p),
inv_alpha = inverse(alpha, p);
invs[0] = 1ll;
for(int i=0;i+1<bucket_n;++i){
invs[i+1] = invs[i] * inv_alpha % p;
}
}
QuadradicMod& operator=(const QuadradicMod&) = default;
QuadradicMod& operator=(QuadradicMod&&) = default;
// solve g^n = b (mod p)
long long babyStepGiantStep(long long b){
for(long long i=0;i<bucket_n;++i){
long long v = b * invs[i] % p;
auto it = std::lower_bound(expos.begin(), expos.end(), std::make_tuple(v, 0), [](const auto& lhs, const auto& rhs){return std::get<0>(lhs) < std::get<0>(rhs);});
if(it != expos.end() && std::get<0>(*it) == v){
long long c = i * bucket_size + std::get<1>(*it);
return c;
}
}
return -1; // no solution
}
long long modSqrt(long long x){
if(x % p == 0){return 0ll;}
long long gcd, s;
std::tie(gcd, s, std::ignore) = extgcd(2ll, p-1);
long long m = babyStepGiantStep(x);
if(m == -1){
return -1;
}
long long t = s * (m / gcd) % (p - 1);
t = t >= 0 ? t : t + (p - 1);
return expt(g, t, p);
}
// solve ax^2 + bx + c \equiv 0 (mod p)
std::tuple<long long, long long> solve(long long a, long long b, long long c){
long long D = (b * b - 4ll * a * c) % p;
D = D >= 0 ? D : D + p;
long long sq = modSqrt(D);
if(sq == -1){return std::make_tuple(-1, -1);}
long long den = inverse(2ll * a % p, p);
long long x0 = (-b - sq) * den % p,
x1 = (-b + sq) * den % p;
x0 = x0 >= 0 ? x0 : x0 + p;
x1 = x1 >= 0 ? x1 : x1 + p;
if(x0 > x1){swap(x0, x1);}
return std::make_tuple(x0, x1);
}
};
QuadradicMod quadradicMod;
int ti;
ll P, R;
int main(){
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
ti = 12;
scanf("%lld %lld", &P, &R);
quadradicMod = std::move(QuadradicMod(P, R, (int)std::sqrt(P) * ti));
int Q;
scanf("%d", &Q);
for(int i=0;i<Q;++i){
ll a, b, c;
scanf("%lld %lld %lld", &a, &b, &c);
ll x0, x1;
tie(x0, x1) = quadradicMod.solve(a, b, c);
if(x0 == -1){puts("-1"); continue;}
if(x0 == x1){
printf("%lld\n", x0);
}else{
printf("%lld %lld\n", x0, x1);
}
}
}
tottoripaper