結果
| 問題 |
No.551 夏休みの思い出(2)
|
| コンテスト | |
| ユーザー |
sntea
|
| 提出日時 | 2017-10-10 01:30:29 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 87 ms / 4,000 ms |
| コード長 | 8,315 bytes |
| コンパイル時間 | 2,066 ms |
| コンパイル使用メモリ | 194,576 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-17 07:14:24 |
| 合計ジャッジ時間 | 6,227 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 47 |
ソースコード
#ifdef LOCAL111
#define _GLIBCXX_DEBUG
#else
#define NDEBUG
#endif
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
const int INF = 1e9;
using namespace std;
template<typename T, typename U> ostream& operator<< (ostream& os, const pair<T,U>& p) { cout << '(' << p.first << ' ' << p.second << ')'; return os; }
#define endl '\n'
#define ALL(a) (a).begin(),(a).end()
#define SZ(a) int((a).size())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define RFOR(i,a,b) for (int i=(b)-1;i>=(a);i--)
#define REP(i,n) FOR(i,0,n)
#define RREP(i,n) for (int i=(n)-1;i>=0;i--)
#ifdef LOCAL111
#define DEBUG(x) cout<<#x<<": "<<(x)<<endl
template<typename T> void dpite(T a, T b){ for(T ite = a; ite != b; ite++) cout << (ite == a ? "" : " ") << *ite; cout << endl;}
#else
#define DEBUG(x) true
template<typename T> void dpite(T a, T b){ return; }
#endif
#define F first
#define S second
#define SNP string::npos
#define WRC(hoge) cout << "Case #" << (hoge)+1 << ": "
template<typename T> void pite(T a, T b){ for(T ite = a; ite != b; ite++) cout << (ite == a ? "" : " ") << *ite; cout << endl;}
template<typename T> bool chmax(T& a, T b){if(a < b){a = b; return true;} return false;}
template<typename T> bool chmin(T& a, T b){if(a > b){a = b; return true;} return false;}
typedef long long int LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
void ios_init(){
//cout.setf(ios::fixed);
//cout.precision(12);
#ifdef LOCAL111
return;
#endif
ios::sync_with_stdio(false); cin.tie(0);
}
//library
random_device rnd;
mt19937 MT(rnd());
int randInt(int from, int to) {
uniform_int_distribution<int> rand(from, to - 1);
return rand(MT);
}
long long randInt(long long from, long long to){
uniform_int_distribution<long long> rand(from, to-1);
return rand(MT);
}
using Integer = long long;
const Integer mod = 1e9+7;
template <typename T>
long long gcd(T x, T y){
return y==0 ? x : gcd(y, x%y);
}
template <typename T>
long long lcm(T x, T y){
return x/gcd(x,y)*y;
}
//const int MAX_n = ;
//const int MAX_r = ;
/*long long Cdp(int n, int r){
if()
}*/
//res.first*a+res.second*b == 1 となるresを返す (a,bは互いに素)
pair<Integer, Integer> extgcd(Integer a,Integer b)
{
if(b==1){
return pair<Integer, Integer>(0,1);
}
pair<Integer, Integer> t=extgcd(b,a%b);
return pair<Integer, Integer>(t.second,t.first-a/b*t.second);
}
//modの逆元を返す
Integer inverse(Integer a,Integer modl)
{
return (extgcd(modl,a).second+modl)%modl;
}
//xCyを返す
long long Cinv(long long x, long long y, const long long modl = mod){
long long n = 1 ,r = 1;
for(int i = 0; i < y; i++){
n = n*(i+1)%modl;
r = r*(x-i)%modl;
}
return r*inverse(n,modl)%modl;
}
long long H(int n, int r){
return Cinv(n+r-1,r);
}
bool primej(long long x){
if(x == 0 || x == 1) return false;
for(long long i = 2; i*i <= x; i++){
if(x%i == 0) return false;
}
return true;
}
std::vector<bool> eratosthenes(int n){
std::vector<bool> res(n+1,true);
res[0] = false;
res[1] = false;
for(long long i = 2; i*i <= n; i++){
for(long long j = 2; i*j <= n; j++){
res[i*j] = false;
}
}
return res;
}
template<typename T>
unordered_map<T,int> primeFactorizem(T x){
unordered_map<T,int> res;
for(T i = 2; i*i <= x; i++){
while(x%i == 0){
res[i]++;
x /= i;
}
}
if(x != 1) res[x]++;
return res;
}
template<typename T>
vector<pair<T,int>> primeFactorize(T x){
vector<pair<T,int>> res;
for(T i = 2; i*i <= x; i++){
int cnt = 0;
while(x%i == 0){
cnt++;
x /= i;
}
if(cnt != 0) res.emplace_back(i,cnt);
}
if(x != 1){
if(res.size() != 0 and res.back().first == x){
res.back().first++;
}else{
res.emplace_back(x,1);
}
}
return res;
}
Integer modpow(Integer x, Integer y, Integer mod){
x %= mod;
y %= mod;
Integer tmp = x;
Integer res = 1;
while(y != 0){
if(y&1){
res = res*tmp%mod;
}
tmp = tmp*tmp%mod;
y >>= 1;
}
return res;
}
// x = second (mod first) 0以上の最小解
Integer garner_gen(const vector<pair<Integer, Integer>>& ex) {
int n = ex.size();
Integer res = 0;
Integer k = 1;
for(int i = 0; i < n; ++i) {
Integer x, m;
tie(m,x) = ex[i];
x = (x%m+m)%m;
Integer g = gcd(k,m);
if((x-res)%g != 0) return -1;
Integer inv = inverse(k/g,m/g);
Integer v = ((x-res)/g%m+m)%m*inv%m;
Integer nk = k/g*m;
res = (res+v*k%nk)%nk;
k = k/g*m;
}
return res;
}
Integer garner_gen(const vector<Integer>& x, const vector<Integer>& mod){
int n = x.size();
vector<pair<Integer, Integer>> v(n);
for(int i = 0; i < n; ++i) {
v[i] = {mod[i],x[i]};
}
return garner_gen(v);
}
//あんま検証してないよ
Integer garner(const vector<pair<Integer, Integer>>& ex) {
int n = ex.size();
Integer res = 0;
Integer k = 1;
for(int i = 0; i < n; ++i) {
Integer x, m;
tie(m,x) = ex[i];
// x = (x%m+m)%m;
Integer inv = inverse(k,m);
Integer v = ((x-res)%m+m)%m*inv%m;
res = (res+v*k);
k = k*m;
}
return res;
}
Integer garner(const vector<Integer>& x, const vector<Integer>& mod){
int n = x.size();
vector<pair<Integer, Integer>> v(n);
for(int i = 0; i < n; ++i) {
v[i] = {mod[i],x[i]};
}
return garner(v);
}
//検証甘い rand.ccに依存
bool isPrime_MillerRabin(Integer x, int k = 20){
if(x == 1) return false;
if((x&1) == 0){
if(x == 2){
return true;
}else{
return false;
}
}
Integer n = x;
Integer s = 0;
x--;
while((x&1) == 0){
x /= 2;
s++;
}
Integer d = x;
for(int cnt = 0; cnt < k; ++cnt) {
Integer a = randInt((Integer)1,n);
if(modpow(a,d,n) != 1){
bool f = true;
Integer num = modpow(a,d,n);
for(int r = 0; r < s; ++r) {
if(num == n-1){
f = false;
break;
}
num = num * num % n;
}
if(f) return false;
}
}
return true;
}
//librarys
// solve Discrete Logarithm Problem
// log_r(a) mod p-1
template<typename Integer>
class DLP {
private:
vector<pair<Integer, int>> bsteps;
unordered_map<Integer, int> gsteps;
long long root;
long long mod;
public:
DLP(Integer p, Integer r) {
mod = p;
root = 1;
while(root*root <= p) root++;
Integer rinv = inverse(r, p);
Integer giant_step = modpow(r, root, p);
Integer baby_step = rinv;
bsteps = vector<pair<Integer, int>>(root+1);
gsteps = unordered_map<Integer, int>(2*root+1);
Integer g = 1;
Integer b = 1;
for(int i = 0; i <= root; ++i) {
gsteps[g%p] = i;
bsteps[i] = {b%p, i};
g *= giant_step;
g %= p;
b *= baby_step;
b %= p;
}
}
Integer baby_step_giant_step(Integer a) {
// Integer ainv = inverse(a, mod);
for(int i = 0; i <= root; i++) {
auto ite = gsteps.find(bsteps[i].first*a%mod);
if(ite != gsteps.end()) {
return (ite->second*root+bsteps[i].second)%(mod-1);
}
}
return -1;
}
};
bool is_quadratic_residue(long long a, long long p) {
if(a == 0) return true;
long long power = modpow(a, (p-1)/2, p);
if(power == p-1) {
return false;
} else {
return true;
}
}
// cipolla's algorithm
long long mod_sqrt(long long a, long long p) {
if(a == 0) return 0;
const long long mod = p;
random_device rnd;
mt19937 MT(rnd());
// mt19937 MT(time());
uniform_int_distribution<int> rand(0, p - 1);
long long ex = -1;
long long b = -1;
while(true) {
long long t = rand(MT);
long long r = (t*t-a)%mod;
if(r < 0) r += mod;
if(r == 0) continue;
if(!is_quadratic_residue(r, p)) {
ex = r;
b = t;
break;
}
}
DEBUG(b); DEBUG(ex);
assert(ex != -1);
using P = pair<long long, long long>;
P res(1,0), bi(b,1);
function<void(P&,P&)> mul_assign
= [&](P& x, P& y) {
long long s,t,u,v;
tie(s,t) = x;
tie(u,v) = y;
x = P((s*u%p+t*v%p*ex%p)%p, (s*v%p+t*u%p)%p);
};
long long t = (p+1)/2;
while(t != 0) {
if(t&1) {
mul_assign(res, bi);
}
mul_assign(bi, bi);
t >>= 1;
}
assert(res.second == 0);
return res.first;
}
int main()
{
ios_init();
// cout << mod_sqrt(4, 5) << endl;
LL p, r;
while(cin >> p >> r) {
int q;
cin >> q;
DLP<LL> dlp(p, r);
REP(_, q) {
LL a, b, c;
cin >> a >> b >> c;
DEBUG(a); DEBUG(b); DEBUG(c);
LL s = (b*b%p-4*a*c%p)%p;
s = (s+p)%p;
DEBUG(s);
if(is_quadratic_residue(s, p)) {
long long root = mod_sqrt(s, p);
set<LL> s;
s.insert(((-b+root)*inverse(2*a, p)%p+p)%p);
s.insert(((-b-root)*inverse(2*a, p)%p+p)%p);
pite(ALL(s));
} else {
cout << -1 << endl;
}
}
}
return 0;
}
sntea