結果
問題 | No.551 夏休みの思い出(2) |
ユーザー | sntea |
提出日時 | 2017-10-10 01:31:46 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 87 ms / 4,000 ms |
コード長 | 8,293 bytes |
コンパイル時間 | 2,245 ms |
コンパイル使用メモリ | 194,444 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-17 07:14:30 |
合計ジャッジ時間 | 5,370 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 3 ms
5,248 KB |
testcase_03 | AC | 8 ms
5,248 KB |
testcase_04 | AC | 13 ms
5,248 KB |
testcase_05 | AC | 26 ms
5,248 KB |
testcase_06 | AC | 38 ms
5,248 KB |
testcase_07 | AC | 3 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 3 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 3 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 3 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 3 ms
5,248 KB |
testcase_19 | AC | 3 ms
5,248 KB |
testcase_20 | AC | 3 ms
5,248 KB |
testcase_21 | AC | 3 ms
5,248 KB |
testcase_22 | AC | 3 ms
5,248 KB |
testcase_23 | AC | 3 ms
5,248 KB |
testcase_24 | AC | 3 ms
5,248 KB |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | AC | 3 ms
5,248 KB |
testcase_27 | AC | 78 ms
5,248 KB |
testcase_28 | AC | 79 ms
5,248 KB |
testcase_29 | AC | 77 ms
5,248 KB |
testcase_30 | AC | 80 ms
5,248 KB |
testcase_31 | AC | 74 ms
5,248 KB |
testcase_32 | AC | 78 ms
5,248 KB |
testcase_33 | AC | 81 ms
5,248 KB |
testcase_34 | AC | 78 ms
5,248 KB |
testcase_35 | AC | 75 ms
5,248 KB |
testcase_36 | AC | 76 ms
5,248 KB |
testcase_37 | AC | 87 ms
5,248 KB |
testcase_38 | AC | 85 ms
5,248 KB |
testcase_39 | AC | 77 ms
5,248 KB |
testcase_40 | AC | 82 ms
5,248 KB |
testcase_41 | AC | 82 ms
5,248 KB |
testcase_42 | AC | 87 ms
5,248 KB |
testcase_43 | AC | 79 ms
5,248 KB |
testcase_44 | AC | 78 ms
5,248 KB |
testcase_45 | AC | 77 ms
5,248 KB |
testcase_46 | AC | 86 ms
5,248 KB |
testcase_47 | AC | 2 ms
5,248 KB |
testcase_48 | AC | 2 ms
5,248 KB |
ソースコード
#ifdef LOCAL111 #define _GLIBCXX_DEBUG #else #define NDEBUG #endif #define _USE_MATH_DEFINES #include <bits/stdc++.h> const int INF = 1e9; using namespace std; template<typename T, typename U> ostream& operator<< (ostream& os, const pair<T,U>& p) { cout << '(' << p.first << ' ' << p.second << ')'; return os; } //library random_device rnd; mt19937 MT(rnd()); int randInt(int from, int to) { uniform_int_distribution<int> rand(from, to - 1); return rand(MT); } long long randInt(long long from, long long to){ uniform_int_distribution<long long> rand(from, to-1); return rand(MT); } using Integer = long long; const Integer mod = 1e9+7; template <typename T> long long gcd(T x, T y){ return y==0 ? x : gcd(y, x%y); } template <typename T> long long lcm(T x, T y){ return x/gcd(x,y)*y; } //const int MAX_n = ; //const int MAX_r = ; /*long long Cdp(int n, int r){ if() }*/ //res.first*a+res.second*b == 1 となるresを返す (a,bは互いに素) pair<Integer, Integer> extgcd(Integer a,Integer b) { if(b==1){ return pair<Integer, Integer>(0,1); } pair<Integer, Integer> t=extgcd(b,a%b); return pair<Integer, Integer>(t.second,t.first-a/b*t.second); } //modの逆元を返す Integer inverse(Integer a,Integer modl) { return (extgcd(modl,a).second+modl)%modl; } //xCyを返す long long Cinv(long long x, long long y, const long long modl = mod){ long long n = 1 ,r = 1; for(int i = 0; i < y; i++){ n = n*(i+1)%modl; r = r*(x-i)%modl; } return r*inverse(n,modl)%modl; } long long H(int n, int r){ return Cinv(n+r-1,r); } bool primej(long long x){ if(x == 0 || x == 1) return false; for(long long i = 2; i*i <= x; i++){ if(x%i == 0) return false; } return true; } std::vector<bool> eratosthenes(int n){ std::vector<bool> res(n+1,true); res[0] = false; res[1] = false; for(long long i = 2; i*i <= n; i++){ for(long long j = 2; i*j <= n; j++){ res[i*j] = false; } } return res; } template<typename T> unordered_map<T,int> primeFactorizem(T x){ unordered_map<T,int> res; for(T i = 2; i*i <= x; i++){ while(x%i == 0){ res[i]++; x /= i; } } if(x != 1) res[x]++; return res; } template<typename T> vector<pair<T,int>> primeFactorize(T x){ vector<pair<T,int>> res; for(T i = 2; i*i <= x; i++){ int cnt = 0; while(x%i == 0){ cnt++; x /= i; } if(cnt != 0) res.emplace_back(i,cnt); } if(x != 1){ if(res.size() != 0 and res.back().first == x){ res.back().first++; }else{ res.emplace_back(x,1); } } return res; } Integer modpow(Integer x, Integer y, Integer mod){ x %= mod; y %= mod; Integer tmp = x; Integer res = 1; while(y != 0){ if(y&1){ res = res*tmp%mod; } tmp = tmp*tmp%mod; y >>= 1; } return res; } // x = second (mod first) 0以上の最小解 Integer garner_gen(const vector<pair<Integer, Integer>>& ex) { int n = ex.size(); Integer res = 0; Integer k = 1; for(int i = 0; i < n; ++i) { Integer x, m; tie(m,x) = ex[i]; x = (x%m+m)%m; Integer g = gcd(k,m); if((x-res)%g != 0) return -1; Integer inv = inverse(k/g,m/g); Integer v = ((x-res)/g%m+m)%m*inv%m; Integer nk = k/g*m; res = (res+v*k%nk)%nk; k = k/g*m; } return res; } Integer garner_gen(const vector<Integer>& x, const vector<Integer>& mod){ int n = x.size(); vector<pair<Integer, Integer>> v(n); for(int i = 0; i < n; ++i) { v[i] = {mod[i],x[i]}; } return garner_gen(v); } //あんま検証してないよ Integer garner(const vector<pair<Integer, Integer>>& ex) { int n = ex.size(); Integer res = 0; Integer k = 1; for(int i = 0; i < n; ++i) { Integer x, m; tie(m,x) = ex[i]; // x = (x%m+m)%m; Integer inv = inverse(k,m); Integer v = ((x-res)%m+m)%m*inv%m; res = (res+v*k); k = k*m; } return res; } Integer garner(const vector<Integer>& x, const vector<Integer>& mod){ int n = x.size(); vector<pair<Integer, Integer>> v(n); for(int i = 0; i < n; ++i) { v[i] = {mod[i],x[i]}; } return garner(v); } //検証甘い rand.ccに依存 bool isPrime_MillerRabin(Integer x, int k = 20){ if(x == 1) return false; if((x&1) == 0){ if(x == 2){ return true; }else{ return false; } } Integer n = x; Integer s = 0; x--; while((x&1) == 0){ x /= 2; s++; } Integer d = x; for(int cnt = 0; cnt < k; ++cnt) { Integer a = randInt((Integer)1,n); if(modpow(a,d,n) != 1){ bool f = true; Integer num = modpow(a,d,n); for(int r = 0; r < s; ++r) { if(num == n-1){ f = false; break; } num = num * num % n; } if(f) return false; } } return true; } //librarys // solve Discrete Logarithm Problem // log_r(a) mod p-1 template<typename Integer> class DLP { private: vector<pair<Integer, int>> bsteps; unordered_map<Integer, int> gsteps; long long root; long long mod; public: DLP(Integer p, Integer r) { mod = p; root = 1; while(root*root <= p) root++; Integer rinv = inverse(r, p); Integer giant_step = modpow(r, root, p); Integer baby_step = rinv; bsteps = vector<pair<Integer, int>>(root+1); gsteps = unordered_map<Integer, int>(2*root+1); Integer g = 1; Integer b = 1; for(int i = 0; i <= root; ++i) { gsteps[g%p] = i; bsteps[i] = {b%p, i}; g *= giant_step; g %= p; b *= baby_step; b %= p; } } Integer baby_step_giant_step(Integer a) { // Integer ainv = inverse(a, mod); for(int i = 0; i <= root; i++) { auto ite = gsteps.find(bsteps[i].first*a%mod); if(ite != gsteps.end()) { return (ite->second*root+bsteps[i].second)%(mod-1); } } return -1; } }; bool is_quadratic_residue(long long a, long long p) { if(a == 0) return true; long long power = modpow(a, (p-1)/2, p); if(power == p-1) { return false; } else { return true; } } // cipolla's algorithm long long mod_sqrt(long long a, long long p) { if(a == 0) return 0; const long long mod = p; random_device rnd; mt19937 MT(rnd()); // mt19937 MT(time()); uniform_int_distribution<int> rand(0, p - 1); long long ex = -1; long long b = -1; while(true) { long long t = rand(MT); long long r = (t*t-a)%mod; if(r < 0) r += mod; if(r == 0) continue; if(!is_quadratic_residue(r, p)) { ex = r; b = t; break; } } assert(ex != -1); using P = pair<long long, long long>; P res(1,0), bi(b,1); function<void(P&,P&)> mul_assign = [&](P& x, P& y) { long long s,t,u,v; tie(s,t) = x; tie(u,v) = y; x = P((s*u%p+t*v%p*ex%p)%p, (s*v%p+t*u%p)%p); }; long long t = (p+1)/2; while(t != 0) { if(t&1) { mul_assign(res, bi); } mul_assign(bi, bi); t >>= 1; } assert(res.second == 0); return res.first; } #define endl '\n' #define ALL(a) (a).begin(),(a).end() #define SZ(a) int((a).size()) #define FOR(i,a,b) for(int i=(a);i<(b);++i) #define RFOR(i,a,b) for (int i=(b)-1;i>=(a);i--) #define REP(i,n) FOR(i,0,n) #define RREP(i,n) for (int i=(n)-1;i>=0;i--) #ifdef LOCAL111 #define DEBUG(x) cout<<#x<<": "<<(x)<<endl template<typename T> void dpite(T a, T b){ for(T ite = a; ite != b; ite++) cout << (ite == a ? "" : " ") << *ite; cout << endl;} #else #define DEBUG(x) true template<typename T> void dpite(T a, T b){ return; } #endif #define F first #define S second #define SNP string::npos #define WRC(hoge) cout << "Case #" << (hoge)+1 << ": " template<typename T> void pite(T a, T b){ for(T ite = a; ite != b; ite++) cout << (ite == a ? "" : " ") << *ite; cout << endl;} template<typename T> bool chmax(T& a, T b){if(a < b){a = b; return true;} return false;} template<typename T> bool chmin(T& a, T b){if(a > b){a = b; return true;} return false;} typedef long long int LL; typedef unsigned long long ULL; typedef pair<int,int> P; void ios_init(){ //cout.setf(ios::fixed); //cout.precision(12); #ifdef LOCAL111 return; #endif ios::sync_with_stdio(false); cin.tie(0); } int main() { ios_init(); // cout << mod_sqrt(4, 5) << endl; LL p, r; while(cin >> p >> r) { int q; cin >> q; DLP<LL> dlp(p, r); REP(_, q) { LL a, b, c; cin >> a >> b >> c; DEBUG(a); DEBUG(b); DEBUG(c); LL s = (b*b%p-4*a*c%p)%p; s = (s+p)%p; DEBUG(s); if(is_quadratic_residue(s, p)) { long long root = mod_sqrt(s, p); set<LL> s; s.insert(((-b+root)*inverse(2*a, p)%p+p)%p); s.insert(((-b-root)*inverse(2*a, p)%p+p)%p); pite(ALL(s)); } else { cout << -1 << endl; } } } return 0; }