結果
問題 | No.665 Bernoulli Bernoulli |
ユーザー |
![]() |
提出日時 | 2017-11-05 12:49:45 |
言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 413 ms / 2,000 ms |
コード長 | 19,177 bytes |
コンパイル時間 | 2,404 ms |
コンパイル使用メモリ | 195,840 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-24 02:50:46 |
合計ジャッジ時間 | 9,627 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 15 |
コンパイルメッセージ
main.cpp: In function ‘void vizGraph(vvll&, int, std::string)’: main.cpp:43:425: warning: ignoring return value of ‘int system(const char*)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 43 | void vizGraph(vvll& g, int mode = 0, string filename = "out.png") { ofstream ofs("./out.dot"); ofs << "digraph graph_name {" << endl; set<P> memo; rep(i, g.size()) rep(j, g[i].size()) { if (mode && (memo.count(P(i, g[i][j])) || memo.count(P(g[i][j], i)))) continue; memo.insert(P(i, g[i][j])); ofs << " " << i << " -> " << g[i][j] << (mode ? " [arrowhead = none]" : "")<< endl; } ofs << "}" << endl; ofs.close(); system(((string)"dot -T png out.dot >" + filename).c_str()); } | ~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ソースコード
#include <bits/stdc++.h>#include <sys/time.h>using namespace std;#define rep(i,n) for(long long i = 0; i < (long long)(n); i++)#define repi(i,a,b) for(long long i = (long long)(a); i < (long long)(b); i++)#define pb push_back#define all(x) (x).begin(), (x).end()#define fi first#define se second#define mt make_tuple#define mp make_pair#define ZERO(a) memset(a,0,sizeof(a))template<class T1, class T2> bool chmin(T1 &a, T2 b) { return b < a && (a = b, true); }template<class T1, class T2> bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }#define exists find_if#define forall all_ofusing ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using P = pair<ll, ll>;using ld = long double; using vld = vector<ld>;using vi = vector<int>; using vvi = vector<vi>; vll conv(vi& v) { vll r(v.size()); rep(i, v.size()) r[i] = v[i]; return r; }inline void input(int &v){ v=0;char c=0;int p=1; while(c<'0' || c>'9'){if(c=='-')p=-1;c=getchar();} while(c>='0' && c<='9'){v=(v<<3)+(v<<1)+c-'0';c=getchar();} v*=p; }template <typename T, typename U> ostream &operator<<(ostream &o, const pair<T, U> &v) { o << "(" << v.first << ", " << v.second << ")"; return o; }template<size_t...> struct seq{}; template<size_t N, size_t... Is> struct gen_seq : gen_seq<N-1, N-1, Is...>{}; template<size_t... Is> struct gen_seq<0, Is...> : seq<Is...>{};template<class Ch, class Tr, class Tuple, size_t... Is>void print_tuple(basic_ostream<Ch,Tr>& os, Tuple const& t, seq<Is...>){ using s = int[]; (void)s{0, (void(os << (Is == 0? "" : ", ") << get<Is>(t)),0)...}; }template<class Ch, class Tr, class... Args>auto operator<<(basic_ostream<Ch, Tr>& os, tuple<Args...> const& t) -> basic_ostream<Ch, Tr>& { os << "("; print_tuple(os, t, gen_seq<sizeof...(Args)>()); return os << ")"; }ostream &operator<<(ostream &o, const vvll &v) { rep(i, v.size()) { rep(j, v[i].size()) o << v[i][j] << " "; o << endl; } return o; }template <typename T> ostream &operator<<(ostream &o, const vector<T> &v) { o << '['; rep(i, v.size()) o << v[i] << (i != v.size()-1 ? ", " : ""); o<< "]"; return o; }template <typename T> ostream &operator<<(ostream &o, const set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; }template <typename T> ostream &operator<<(ostream &o, const unordered_set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it<< (next(it) != m.end() ? ", " : ""); o << "]"; return o; }template <typename T, typename U> ostream &operator<<(ostream &o, const map<T, U> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o<< *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; }template <typename T, typename U, typename V> ostream &operator<<(ostream &o, const unordered_map<T, U, V> &m) { o << '['; for (auto it = m.begin();it != m.end(); it++) o << *it; o << "]"; return o; }vector<int> range(const int x, const int y) { vector<int> v(y - x + 1); iota(v.begin(), v.end(), x); return v; }template <typename T> istream& operator>>(istream& i, vector<T>& o) { rep(j, o.size()) i >> o[j]; return i;}string bits_to_string(ll input, ll n=64) { string s; rep(i, n) s += '0' + !!(input & (1ll << i)); reverse(all(s)); return s; }template <typename T> ostream &operator<<(ostream &o, const priority_queue<T> &v) { auto tmp = v; while (tmp.size()) { auto x = tmp.top(); tmp.pop();o << x << " ";} o << endl; return o; }template <typename T> unordered_map<T, ll> counter(vector<T> vec){unordered_map<T, ll> ret; for (auto&& x : vec) ret[x]++; return ret;};string substr(string s, P x) {return s.substr(x.fi, x.se - x.fi); }void vizGraph(vvll& g, int mode = 0, string filename = "out.png") { ofstream ofs("./out.dot"); ofs << "digraph graph_name {" << endl; set<P> memo;rep(i, g.size()) rep(j, g[i].size()) { if (mode && (memo.count(P(i, g[i][j])) || memo.count(P(g[i][j], i)))) continue; memo.insert(P(i, g[i][j])); ofs << " " << i << " -> " << g[i][j] << (mode ? " [arrowhead = none]" : "")<< endl; } ofs << "}" << endl; ofs.close(); system(((string)"dot -T png out.dot >" + filename).c_str()); }size_t random_seed; namespace std { using argument_type = P; template<> struct hash<argument_type> { size_t operator()(argument_type const& x) const{ size_t seed = random_seed; seed ^= hash<ll>{}(x.fi); seed ^= (hash<ll>{}(x.se) << 1); return seed; } }; }; // hash for various classnamespace myhash{ const int Bsizes[]={3,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77,81}; const int xor_nums[]={0x100007d1,0x5ff049c9,0x14560859,0x07087fef,0x3e277d49,0x4dba1f17,0x709c5988,0x05904258,0x1aa71872,0x238819b3,0x7b002bb7,0x1cf91302,0x0012290a,0x1083576b,0x76473e49,0x3d86295b,0x20536814,0x08634f4d,0x115405e8,0x0e6359f2}; const int hash_key=xor_nums[rand()%20]; const int mod_key=xor_nums[rand()%20]; template<typename T> struct myhash{ std::size_t operator()(const T& val) const { return (hash<T>{}(val)%mod_key)^hash_key; } }; };template <typename T> class uset:public std::unordered_set<T,myhash::myhash<T>> { using SET=std::unordered_set<T,myhash::myhash<T>>; public: uset():SET(){SET::rehash(myhash::Bsizes[rand()%20]);} };uint32_t randxor() { static uint32_t x=1+(uint32_t)random_seed,y=362436069,z=521288629,w=88675123; uint32_t t; t=(x^(x<<11));x=y;y=z;z=w; return( w=(w^(w>>19))^(t^(t>>8)) ); }struct timeval start; double sec() { struct timeval tv; gettimeofday(&tv, NULL); return (tv.tv_sec - start.tv_sec) + (tv.tv_usec - start.tv_usec) *1e-6; }struct init_{init_(){ gettimeofday(&start, NULL); ios::sync_with_stdio(false); cin.tie(0); struct timeval myTime; struct tm *time_st; gettimeofday(&myTime, NULL); time_st = localtime(&myTime.tv_sec); srand(myTime.tv_usec); random_seed = RAND_MAX / 2 + rand() / 2; }} init__;#define rand randxorstatic const double EPS = 1e-14;static const long long INF = 1e18;static const long long mo = 1e9+7;#define ldout fixed << setprecision(40)class Mod {public:int num;Mod() : Mod(0) {}Mod(long long int n) : num(n) { }Mod(const string &s){ long long int tmp = 0; for(auto &c:s) tmp = (c-'0'+tmp*10) % mo; num = tmp; }Mod(int n) : Mod(static_cast<long long int>(n)) {}operator int() { return num; }};istream &operator>>(istream &is, Mod &x) { long long int n; is >> n; x = n; return is; }ostream &operator<<(ostream &o, const Mod &x) { o << x.num; return o; }Mod operator+(const Mod a, const Mod b) { return Mod((a.num + b.num) % mo); }Mod operator+(const long long int a, const Mod b) { return Mod(a) + b; }Mod operator+(const Mod a, const long long int b) { return b + a; }Mod operator++(Mod &a) { return a + Mod(1); }Mod operator-(const Mod a, const Mod b) { return Mod((mo + a.num - b.num) % mo); }Mod operator-(const long long int a, const Mod b) { return Mod(a) - b; }Mod operator--(Mod &a) { return a - Mod(1); }Mod operator*(const Mod a, const Mod b) { return Mod(((long long)a.num * b.num) % mo); }Mod operator*(const long long int a, const Mod b) { return Mod(a)*b; }Mod operator*(const Mod a, const long long int b) { return Mod(b)*a; }Mod operator*(const Mod a, const int b) { return Mod(b)*a; }Mod operator+=(Mod &a, const Mod b) { return a = a + b; }Mod operator+=(long long int &a, const Mod b) { return a = a + b; }Mod operator-=(Mod &a, const Mod b) { return a = a - b; }Mod operator-=(long long int &a, const Mod b) { return a = a - b; }Mod operator*=(Mod &a, const Mod b) { return a = a * b; }Mod operator*=(long long int &a, const Mod b) { return a = a * b; }Mod operator*=(Mod& a, const long long int &b) { return a = a * b; }Mod factorial(const long long n) {if (n < 0) return 0;Mod ret = 1;for (int i = 1; i <= n; i++) {ret *= i;}return ret;}Mod operator^(const Mod a, const long long n) {if (n == 0) return Mod(1);Mod res = (a * a) ^ (n / 2);if (n % 2) res = res * a;return res;}Mod modpowsum(const Mod a, const long long b) {if (b == 0) return 0;if (b % 2 == 1) return modpowsum(a, b - 1) * a + Mod(1);Mod result = modpowsum(a, b / 2);return result * (a ^ (b / 2)) + result;}/*************************************/// 以下、modは素数でなくてはならない!/*************************************/Mod inv(const Mod a) { return a ^ (mo - 2); }Mod operator/(const Mod a, const Mod b) { assert(b.num != 0); return a * inv(b); }Mod operator/(const long long int a, const Mod b) { assert(b.num != 0); return Mod(a) * inv(b); }Mod operator/=(Mod &a, const Mod b) { assert(b.num != 0); return a = a * inv(b); }// n!と1/n!のテーブルを作る。// nCrを高速に計算するためのもの。//// O(n + log mo)vector<Mod> fact, rfact;void constructFactorial(const long long n) {fact.resize(n);rfact.resize(n);fact[0] = rfact[0] = 1;for (int i = 0; i < n - 1; i++) {fact[i+1] = fact[i] * (i+1);}rfact[n-1] = Mod(1) / fact[n-1];for (int i = n - 1; i >= 1; i--)rfact[i-1] = rfact[i] * i; // ((n-1)!)^-1 = (n!)^-1 * n}// O(1)// constructFactorialしておけば、n, r=1e7くらいまではいけますMod nCr(const long long n, const long long r) {if (n < 0 || r < 0) return 0;return fact[n] * rfact[r] * rfact[n-r];}// O(r.size())// sum(r)! / r[0]! / r[1]! / ...Mod nCr(const vector<long long> r) {ll sum = accumulate(all(r), 0ll);Mod ret = fact[sum];rep(i, r.size())ret *= rfact[r[i]];return ret;}// O(k log mo)Mod nCrWithoutConstruction(const long long n, const long long k) {if (n < 0) return 0;if (k < 0) return 0;Mod ret = 1;for (int i = 0; i < k; i++) {ret *= n - (Mod)i;ret /= Mod(i+1);}return ret;}// n*mの盤面を左下から右上に行く場合の数// O(1)Mod nBm(const long long n, const long long m) {if (n < 0 || m < 0) return 0;return nCr(n + m, n);}/*************************************/// GF(p)の行列演算/*************************************/using number = Mod;using arr = vector<number>;using matrix = vector<vector<Mod>>;ostream &operator<<(ostream &o, const arr &v) { rep(i, v.size()) cout << v[i] << " "; return o; }ostream &operator<<(ostream &o, const matrix &v) { rep(i, v.size()) cout << v[i]; return o; }matrix zero(int n) { return matrix(n, arr(n, 0)); } // O(n^2)matrix identity(int n) { matrix A(n, arr(n, 0)); rep(i, n) A[i][i] = 1; return A; } // O(n^2)// O(n^2)arr mul(const matrix &A, const arr &x) {arr y(A.size(), 0);rep(i, A.size()) rep(j, A[0].size()) y[i] += A[i][j] * x[j];return y;}// O(n^3)matrix mul(const matrix &A, const matrix &B) {matrix C(A.size(), arr(B[0].size(), 0));rep(i, C.size())rep(j, C[i].size())rep(k, A[i].size())C[i][j] += A[i][k] * B[k][j];return C;}// O(n^2)matrix plu(const matrix &A, const matrix &B) {matrix C(A.size(), arr(B[0].size(), 0));rep(i, C.size())rep(j, C[i].size())C[i][j] += A[i][j] + B[i][j];return C;}// O(n^2)arr plu(const arr &A, const arr &B) {arr C(A.size());rep(i, A.size())C[i] += A[i] + B[i];return C;}// 構築なし累乗// return A^e//// O(n^3 log e)matrix pow(const matrix &A, long long e) {return e == 0 ? identity(A.size()) :e % 2 == 0 ? pow(mul(A, A), e/2) : mul(A, pow(A, e-1));}// 構築付き累乗//// return powA: A^2^i// O(n^3 log e)matrix pow(const vector<matrix>& powA, long long e) { // powA[0]がA// cout << powA[0] << "^" << e <<endl;if (e <= 0) return identity(powA[0].size());matrix ret = identity(powA[0].size());rep(i, powA.size()) if (e & (1ll << i)) {ret = mul(ret, powA[i]);}return ret;}arr powmul(const vector<matrix>& powA, long long e, arr& a) { // powA[0]がA// cout << powA[0] << "^" << e <<endl;if (e <= 0) return a;arr ret = a;rep(i, powA.size()) if (e & (1ll << i)) {ret = mul(powA[i], ret);}return ret;}// Aを最大e乗まで計算するためのpowAを構築する。// powAは副作用で返す//// O(n^3 log e)void construct_powA(const matrix &A, long long e, vector<matrix>& powA) {powA.clear();powA.pb(A);for (int i = 1; (1ll << i) < e; i++) {powA.pb(mul(powA[i-1], powA[i-1]));}}// O(n)number inner_product(const arr &a, const arr &b) {number ans = 0;for (int i = 0; i < (int)a.size(); ++i)ans += a[i] * b[i];return ans;}// O(n)number tr(const matrix &A) {number ans = 0;for (int i = 0; i < (int)A.size(); ++i)ans += A[i][i];return ans;}// O( n^3 )// modは素数でなければならない!!number det(matrix A) {int n = A.size();assert(n == (int)A[0].size());number ans = 1;for (int i = 0; i < n; i++) {int pivot = -1;for (int j = i; j < n; j++)if (A[j][i]) {pivot = j;break;}if (pivot == -1) return 0;if (i != pivot) {swap(A[i], A[pivot]);ans *= -1;}number tmpinv = inv(A[i][i]);for (int j = i + 1; j < n; j++) {number c = A[j][i] * tmpinv;for (int k = i; k < n; k++) {A[j][k] = (A[j][k] - c * A[i][k]);}}ans *= A[i][i];}return ans;}// O( n^3 ).// int rank(matrix A) はまだ// O( n^3 ).// modが2の時だけ使える演算#define FOR(x,to) for(x=0;x<(to);x++) // repに変えちゃダメ。xがint xになると動かないint gf2_rank(matrix A) { /* input */if (!A.size() || (A.size() && A[0].size())) return 0;int n = A.size();assert(mo == 2);int i,j,k;FOR(i,n) {int be=i,mi=n+1;for(j=i;j<n;j++) {FOR(k,n) if(A[j][k]) break;if(k<mi) be=j,mi=k;}if(mi>=n) break;FOR(j,n) swap(A[i][j],A[be][j]);FOR(j,n) if(i!=j&&A[j][mi]) {FOR(k,n) A[j][k] += A[i][k]; // ^=のつもり}}return i;}// input : a, b// output : x, y s.t. ax + by = (符号付き)gcd(a, b)int extGcd( int a, int b, int& x, int& y ) {if ( b == 0 ) {x = 1; y = 0; return a;}int g = extGcd( b, a % b, y, x );y -= (a / b) * x;return g;}// xn = 1 (mod p)int invMod(int n, int p) {int x, y, g = extGcd ( n, p, x, y );if (g == 1) return x;else if (g == -1) return -x;else return 0; // gcd(n, p) != 1,解なし}// 有限体上の線型方程式系 Ax = b (mod q)を解く// a = [A | b]: m × n の係数行列// x: 解を記録するベクトル// 計算量: O(min(m, n) * m * n)bool gauss(matrix a, arr& x, int m, int n, int q) {int rank = 0;vll pivot(n);// 前進消去for (int i = 0, j = 0; i < m && j < n-1; ++j) {int p = -1;Mod tmp = 0;// ピボットを探すfor (int k = i; p < 0 && k < m; ++k) {if (a[k][j] != 0) p = k; // 有限体上なので非零で十分}// ランク落ち対策if (p == -1) continue;// 第i行と第p行を入れ替えるfor (int k = j; k < n; ++k)tmp = a[i][k], a[i][k] = a[p][k], a[p][k] = tmp;// 第i行を使って掃き出すfor (int k = i+1; k < m; ++k) {tmp = - a[k][j] * invMod(a[i][j], q) % q;for (int l = j; l < n; ++l)a[k][l] += tmp * a[i][l];}// 第i行を正規化: a[i][j] = 1 にするtmp = invMod(a[i][j], q);for (int k = j; k < n; ++k)a[i][k] = a[i][k] * tmp % q;pivot[i++] = j, rank++;}// 解の存在のチェックfor (int i = rank; i < m; ++i)if (a[i][n-1] != 0) return false;// 解をxに代入(後退代入)for (int i = 0; i < rank; ++i)x[i] = a[i][n-1];for (int i = rank-1; i >= 0; --i) {for (int j = pivot[i] + 1; j < n-1; ++j)x[i] -= a[i][j] * x[j];// x[i] -= x[i] / q * q, x[i] = (x[i] + q) % q; // 0 <= x[i] < q に調整}rep(i, x.size()) x[i] += Mod(0);return true;}arr solve(matrix a, arr b) {int m = a.size();arr ret(a.size());rep(i, a.size()) {a[i].pb(b[i]);}gauss(a, ret, m, m+1, mo);return ret;}// a x + b y = gcd(a, b)なるx, yを一つ探す。//// g = gcd(a, b)として、// 任意の整数kについて(x+k*b/g, y+k*a/g)が必要十分な解空間となる。long long extgcd(long long a, long long b, long long &x, long long &y) {long long g = a; x = 1; y = 0;if (b != 0) g = extgcd(b, a % b, y, x), y -= (a / b) * x;return g;}// a x = b (mod m)を解く// これはa x + m k = bなるxの全列挙に他ならない。//// bがgcd(a, m)で割り切れないならば、// 解なしである。//// 割り切れるならば// すなわち、extgcd(a, m, x, k), x *= b / gcd(a, m), k *= b / gcd(a, m)で解ける。// 任意の整数nについて、x+n*m/gcd(a, m)が解である。//// ret.fi, ret.seに対して、// (1) ret.fi+k*ret.seが任意の解で、ret.fiは最小非負解// (2) ret.fiが-1だと解なしP solveLinearEquation(ll a, ll b, ll m) {if (b % __gcd(a, m) != 0) {return P(-1, -1);} else {ll x, k;extgcd(a, m, x, k), x *= b / __gcd(a, m), k *= b / __gcd(a, m);P ret = P(x, m / __gcd(a, m));ret.fi %= ret.se;ret.fi += ret.se;ret.fi %= ret.se;return ret;}}/*************************************/// 謎演算/*************************************/// 線型連立合同式 a[i] x == b[i] (mod m[i]) (i = 0, ..., n-1) を解く.bool linearCongruences(const vector<long long> &a,const vector<long long> &b,const vector<long long> &m,long long &x, long long &M) {int n = a.size();x = 0; M = 1;rep(i, n) {long long a_ = a[i] % M, b_ = b[i] - a[i] * x, m_ = m[i];long long y, t, g = extgcd(a_, m_, y, t);if (b_ % g) return false;b_ /= g; m_ /= g;x += M * (y * b_ % m_);M *= m_;}x = (x + M) % M;return true;}// オイラーのφ関数// LookUp Versionconst int N = 1000000;long long eulerPhi(long long n) {static int lookup = 0, p[N], f[N];if (!lookup) {rep(i,N) p[i] = 1, f[i] = i;for (int i = 2; i < N; ++i) {if (p[i]) {f[i] -= f[i] / i;for (int j = i+i; j < N; j+=i)p[j] = 0, f[j] -= f[j] / i;}}lookup = 1;}return f[n];}int main(void) {ll n, k; cin >> n >> k; assert(1<=n&&n<=1e16); assert(1<=k&&k<=1e5);n %= mo;constructFactorial(k+10);vector<Mod> b(k+10);b[0] = 1;repi(i, 1, b.size()) {rep(j, i) {b[i] += nCr(i+1,j) * b[j];}b[i] *= -((Mod)1 / (Mod)(i+1));}// cout << b << endl;Mod ret = 0;rep(j, k+1) {ret += nCr(k+1, j) * b[j] * (Mod(n+1)^(k-j+1));}ret /= Mod(k+1);cout << (ret+mo)%mo << endl;return 0;}