結果
| 問題 |
No.579 3 x N グリッド上のサイクルのサイズ(hard)
|
| ユーザー |
yosupot
|
| 提出日時 | 2017-12-02 21:18:40 |
| 言語 | D (dmd 2.109.1) |
| 結果 |
AC
|
| 実行時間 | 10 ms / 2,000 ms |
| コード長 | 29,701 bytes |
| コンパイル時間 | 2,212 ms |
| コンパイル使用メモリ | 168,052 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-06-12 22:46:30 |
| 合計ジャッジ時間 | 4,739 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 80 |
ソースコード
/+ dub.sdl:
name "A"
dependency "dcomp" version=">=0.7.4"
+/
import std.stdio, std.algorithm, std.range, std.conv;
// import dcomp.foundation, dcomp.scanner;
// import dcomp.numeric.convolution;
// import dcomp.modint;
// import dcomp.modpoly;
immutable int MD = 10^^9 + 7;
alias Mint = ModInt!MD;
alias MPol = ModPoly!MD;
int main() {
auto po = [
0,
32,
316,
2292,
14422,
84744,
479004,
2638328,
14258574,
75940592,
399782668,
84795558,
786749020,
442043859,
352536615,
76576421,
744912747,
420315017,
25759333,
562730793,
424899366,
153177921,
250747498,
306910436,
324829483,
572545341,
104022619,
226237183,
421453002,
754280938,
291624319,
60437277,
297658752,
677142927,
63550828,
801541292,
683008492,
650348,
519624175,
715484025,
724658778,
152363657,
280344328,
892278238,
206785631,
227202296,
788486407,
392284243,
927772200,
781378846,
881515964,
905982211,
674841192,
139044658,
711210295,
384364637,
137653614,
441363040,
812818651,
929556368,
494420762,
802527485,
700803632,
461521718,
152786116,
688977792,
48724029,
642700933,
15567410,
246397043,
859581827,
685250826,
120226158,
551687712,
987163282,
422276494,
570671107,
813070470,
429968009,
849487586,
453150672,
606112895,
921636591,
961537190,
68995663,
873642098,
377371441,
101407285,
187434129,
180415383,
920712750,
544594592,
402649575,
549811430,
619506771,
426917748,
274013175,
615469131,
800944525,
925880089,
].map!(x => Mint(x)).array;
auto pol = MPol(po);
auto v = berlekampMassey(po);
// writeln(v);
long x;
sc.read(x);
auto z = nthMod(x, v);
Mint sm = 0;
foreach (i, d; po) {
sm += d * z[i];
}
writeln(sm);
// for (int i: rng(int(v.size()))) {
// sm += po[i] * z.freq(i);
// }
// cout << to_string(z) << endl;
// cout << sm.v << endl;*/
return 0;
}
Scanner sc;
static this() {
sc = new Scanner(stdin);
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/modpoly.d */
// module dcomp.modpoly;
// import dcomp.numeric.primitive;
// import dcomp.numeric.convolution;
// import dcomp.modint;
// import dcomp.container.stack;
struct ModPoly(uint MD) if (MD < int.max) {
alias Mint = ModInt!MD;
import std.algorithm : min, max, reverse;
Stack!Mint d;
void shrink() { while (!d.empty && d.back == Mint(0)) d.removeBack; }
@property size_t length() const { return d.length; }
@property inout(Mint)[] data() inout { return d.data; }
this(in Mint[] v) {
d = v.dup;
shrink();
}
const(Mint) opIndex(size_t i) const {
if (i < d.length) return d[i];
return Mint(0);
}
void opIndexAssign(Mint x, size_t i) {
if (i < d.length) {
d[i] = x;
shrink();
return;
}
if (x == Mint(0)) return;
while (d.length < i) d.insertBack(Mint(0));
d.insertBack(x);
return;
}
ModPoly opBinary(string op : "+")(in ModPoly r) const {
size_t N = length, M = r.length;
Mint[] res = new Mint[max(N, M)];
foreach (i; 0..max(N, M)) res[i] = this[i] + r[i];
return ModPoly(res);
}
ModPoly opBinary(string op : "-")(in ModPoly r) const {
size_t N = length, M = r.length;
Mint[] res = new Mint[max(N, M)];
foreach (i; 0..max(N, M)) res[i] = this[i] - r[i];
return ModPoly(res);
}
ModPoly opBinary(string op : "*")(in ModPoly r) const {
size_t N = length, M = r.length;
if (min(N, M) == 0) return ModPoly();
return ModPoly(multiply(data, r.data));
}
ModPoly opBinary(string op : "*")(in Mint r) const {
Mint[] res = new Mint[length];
foreach (i; 0..length) res[i] = this[i]*r;
return ModPoly(res);
}
ModPoly opBinary(string op : "/")(in ModPoly r) const {
size_t B = max(1, length, r.length);
return divWithInv(r.inv(B), B);
}
ModPoly opBinary(string op : "%")(in ModPoly r) const {
return *this - y * div(y);
}
ModPoly opBinary(string op : "<<")(size_t n) const {
Mint[] res = new Mint[n+length];
foreach (i; 0..length) res[i+n] = this[i];
return ModPoly(res);
}
ModPoly opBinary(string op : ">>")(size_t n) const {
if (length <= n) return ModPoly();
Mint[] res = new Mint[length-n];
foreach (i; n..length) res[i-n] = this[i];
return ModPoly(res);
}
ModPoly opOpAssign(string op)(in ModPoly r) {
return mixin("this=this"~op~"r");
}
ModPoly strip(size_t n) const {
auto res = d.data.dup;
res = res[0..min(n, length)];
return ModPoly(res);
}
ModPoly divWithInv(in ModPoly ir, size_t B) const {
return (this * ir) >> (B-1);
}
ModPoly remWithInv(in ModPoly r, in ModPoly ir, size_t B) const {
return this - r * divWithInv(ir, B);
}
ModPoly rev(ptrdiff_t n = -1) const {
auto res = d.data.dup;
if (n != -1) res = res[0..n];
reverse(res);
return ModPoly(res);
}
ModPoly inv(size_t n) const {
assert(length >= 1);
assert(n >= length-1);
ModPoly c = rev();
ModPoly d = ModPoly([Mint(1)/c[0]]);
for (ptrdiff_t i = 1; i+length-2 < n; i *= 2) {
d = (d * (ModPoly([Mint(2)]) - c*d)).strip(2*i);
}
return d.rev(n+1-length);
}
string toString() {
import std.conv : to;
import std.range : join;
string[] l = new string[length];
foreach (i; 0..length) {
l[i] = (this[i]).toString ~ "x^" ~ i.to!string;
}
return l.join(" + ");
}
}
ModPoly!MD nthMod(uint MD)(ulong n, in ModPoly!MD mod) {
import core.bitop : bsr;
alias Mint = ModInt!MD;
assert(mod.length);
size_t B = mod.length * 2 - 1;
auto modInv = mod.inv(B);
auto p = ModPoly!MD([Mint(1)]);
if (n == 0) return p;
auto m = bsr(n);
foreach_reverse(i; 0..m+1) {
if (n & (1L<<i)) {
p = (p<<1).remWithInv(mod, modInv, B);
}
if (i) {
p = (p*p).remWithInv(mod, modInv, B);
}
}
return p;
}
ModPoly!MD berlekampMassey(uint MD)(in ModInt!MD[] s) {
alias Mint = ModInt!MD;
Mint[] b = [Mint(-1)], c = [Mint(-1)];
Mint y = 1;
foreach (ed; 1..s.length+1) {
auto L = c.length, M = b.length;
Mint x = 0;
foreach (i; 0..L) {
x += c[i] * s[ed-L+i];
}
b ~= Mint(0); M++;
if (x == Mint(0)) {
continue;
}
auto freq = x/y;
if (L < M) {
auto tmp = c;
import std.range : repeat, take, array;
c = Mint(0).repeat.take(M-L).array ~ c;
foreach (i; 0..M) {
c[M-1-i] -= freq*b[M-1-i];
}
b = tmp;
y = x;
} else {
foreach (i; 0..M) {
c[L-1-i] -= freq*b[M-1-i];
}
}
}
return ModPoly!MD(c);
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/modint.d */
// module dcomp.modint;
// import dcomp.numeric.primitive;
struct ModInt(uint MD) if (MD < int.max) {
import std.conv : to;
uint v;
this(int v) {this(long(v));}
this(long v) {this.v = (v%MD+MD)%MD;}
static auto normS(uint x) {return (x<MD)?x:x-MD;}
static auto make(uint x) {ModInt m; m.v = x; return m;}
auto opBinary(string op:"+")(ModInt r) const {return make(normS(v+r.v));}
auto opBinary(string op:"-")(ModInt r) const {return make(normS(v+MD-r.v));}
auto opBinary(string op:"*")(ModInt r) const {return make((ulong(v)*r.v%MD).to!uint);}
auto opBinary(string op:"/")(ModInt r) const {return this*inv(r);}
auto opOpAssign(string op)(ModInt r) {return mixin ("this=this"~op~"r");}
static ModInt inv(ModInt x) {return ModInt(extGcd!int(x.v, MD)[0]);}
string toString() const {return v.to!string;}
}
struct DModInt(string name) {
import std.conv : to;
static uint MD;
uint v;
this(int v) {this(long(v));}
this(long v) {this.v = ((v%MD+MD)%MD).to!uint;}
static auto normS(uint x) {return (x<MD)?x:x-MD;}
static auto make(uint x) {DModInt m; m.MD = MD; m.v = x; return m;}
auto opBinary(string op:"+")(DModInt r) const {return make(normS(v+r.v));}
auto opBinary(string op:"-")(DModInt r) const {return make(normS(v+MD-r.v));}
auto opBinary(string op:"*")(DModInt r) const {return make((ulong(v)*r.v%MD).to!uint);}
auto opBinary(string op:"/")(DModInt r) const {return this*inv(r);}
auto opOpAssign(string op)(DModInt r) {return mixin ("this=this"~op~"r");}
static DModInt inv(DModInt x) {
return DModInt(extGcd!int(x.v, MD)[0]);
}
string toString() {return v.to!string;}
}
template isModInt(T) {
const isModInt =
is(T : ModInt!MD, uint MD) || is(S : DModInt!S, string s);
}
T[] factTable(T)(size_t length) if (isModInt!T) {
import std.range : take, recurrence;
import std.array : array;
return T(1).recurrence!((a, n) => a[n-1]*T(n)).take(length).array;
}
T[] invFactTable(T)(size_t length) if (isModInt!T) {
import std.algorithm : map, reduce;
import std.range : take, recurrence, iota;
import std.array : array;
auto res = new T[length];
res[$-1] = T(1) / iota(1, length).map!T.reduce!"a*b";
foreach_reverse (i, v; res[0..$-1]) {
res[i] = res[i+1] * T(i+1);
}
return res;
}
T[] invTable(T)(size_t length) if (isModInt!T) {
auto f = factTable!T(length);
auto invf = invFactTable!T(length);
auto res = new T[length];
foreach (i; 1..length) {
res[i] = invf[i] * f[i-1];
}
return res;
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/numeric/convolution.d */
// module dcomp.numeric.convolution;
T[] zeta(T)(T[] v, bool rev) {
import core.bitop : bsr;
int n = bsr(v.length);
assert(1<<n == v.length);
foreach (fe; 0..n) {
foreach (i, _; v) {
if (i & (1<<fe)) continue;
if (!rev) {
v[i] += v[i|(1<<fe)];
} else {
v[i] -= v[i|(1<<fe)];
}
}
}
return v;
}
T[] hadamard(T)(T[] v, bool rev) {
import core.bitop : bsr;
int n = bsr(v.length);
assert(1<<n == v.length);
foreach (fe; 0..n) {
foreach (i, _; v) {
if (i & (1<<fe)) continue;
auto l = v[i], r = v[i|(1<<fe)];
if (!rev) {
v[i] = l+r;
v[i|(1<<fe)] = l-r;
} else {
v[i] = (l+r)/2;
v[i|(1<<fe)] = (l-r)/2;
}
}
}
return v;
}
import std.complex;
double[] fftSinList(size_t S) {
import std.math : PI, sin;
assert(2 <= S);
size_t N = 1<<S;
static double[][30] buf;
if (!buf[S].length) {
buf[S] = new double[3*N/4+1];
foreach (i; 0..N/4+1) {
buf[S][i] = sin(i*2*double(PI)/N);
buf[S][N/2-i] = buf[S][i];
buf[S][N/2+i] = -buf[S][i];
}
}
return buf[S];
}
void fft(bool type)(Complex!double[] c) {
import std.algorithm : swap;
import core.bitop : bsr;
alias P = Complex!double;
size_t N = c.length;
assert(N);
size_t S = bsr(N);
assert(1<<S == N);
if (S == 1) {
auto x = c[0], y = c[1];
c[0] = x+y;
c[1] = x-y;
return;
}
auto rot = fftSinList(S);
P[] a = c.dup, b = new P[c.length];
foreach (i; 1..S+1) {
size_t W = 1<<(S-i);
for (size_t y = 0; y < N/2; y += W) {
P now = P(rot[y + N/4], rot[y]);
if (type) now = conj(now);
foreach (x; 0..W) {
auto l = a[y<<1 | x];
auto r = now * a[y<<1 | x | W];
b[y | x] = l+r;
b[y | x | N>>1] = l-r;
}
}
swap(a, b);
}
c[] = a[];
}
double[] multiply(in double[] a, in double[] b) {
alias P = Complex!double;
size_t A = a.length, B = b.length;
if (!A || !B) return [];
size_t lg = 1;
while ((1<<lg) < A+B-1) lg++;
size_t N = 1<<lg;
P[] d = new P[N];
d[] = P(0, 0);
foreach (i; 0..A) d[i].re = a[i];
foreach (i; 0..B) d[i].im = b[i];
fft!false(d);
foreach (i; 0..N/2+1) {
auto j = i ? (N-i) : 0;
P x = P(d[i].re+d[j].re, d[i].im-d[j].im);
P y = P(d[i].im+d[j].im, -d[i].re+d[j].re);
d[i] = x * y / 4;
if (i != j) d[j] = conj(d[i]);
}
fft!true(d);
double[] c = new double[A+B-1];
foreach (i; 0..A+B-1) {
c[i] = d[i].re / N;
}
return c;
}
// import dcomp.modint, dcomp.numeric.primitive;
void nft(uint G, bool type, Mint)(Mint[] c) {
import std.algorithm : swap;
import core.bitop : bsr;
size_t N = c.length;
assert(N);
size_t S = bsr(N);
assert(1<<S == N);
Mint[] a = c.dup, b = new Mint[N];
foreach (i; 1..S+1) {
size_t W = 1<<(S-i);
Mint base = pow(Mint(G), Mint(-1).v/(1<<i));
if (type) base = Mint(1)/base;
Mint now = 1;
for (size_t y = 0; y < N/2; y += W) {
foreach (x; 0..W) {
auto l = a[y<<1 | x];
auto r = now * a[y<<1 | x | W];
b[y | x] = l+r;
b[y | x | N>>1] = l-r;
}
now *= base;
}
swap(a, b);
}
c[] = a[];
}
Mint[] multiply(uint G, Mint)(in Mint[] a, in Mint[] b) {
size_t A = a.length, B = b.length;
if (!A || !B) return [];
size_t lg = 1;
while ((1<<lg) < A+B-1) lg++;
size_t N = 1<<lg;
Mint[] _a = new Mint[N];
Mint[] _b = new Mint[N];
foreach (i; 0..A) _a[i] = a[i];
foreach (i; 0..B) _b[i] = b[i];
nft!(G, false)(_a);
nft!(G, false)(_b);
foreach (i; 0..N) _a[i] *= _b[i];
nft!(G, true)(_a);
Mint[] c = new Mint[A+B-1];
Mint iN = Mint(1) / Mint(N);
foreach (i; 0..A+B-1) {
c[i] = _a[i] * iN;
}
return c;
}
Mint[] multiply(Mint, size_t M = 3, size_t W = 10)(in Mint[] a, in Mint[] b)
if (isModInt!Mint) {
import std.math : round;
alias P = Complex!double;
size_t A = a.length, B = b.length;
if (!A || !B) return [];
auto N = A + B - 1;
size_t lg = 1;
while ((1<<lg) < N) lg++;
N = 1<<lg;
P[][M] x, y;
P[] w = new P[N];
foreach (ph; 0..M) {
x[ph] = new P[N];
y[ph] = new P[N];
w[] = P(0, 0);
foreach (i; 0..A) w[i].re = (a[i].v >> (ph*W)) % (1<<W);
foreach (i; 0..B) w[i].im = (b[i].v >> (ph*W)) % (1<<W);
fft!false(w);
foreach (i; 0..N) w[i] *= 0.5;
foreach (i; 0..N) {
auto j = i ? N-i : 0;
x[ph][i] = P(w[i].re+w[j].re, w[i].im-w[j].im);
y[ph][i] = P(w[i].im+w[j].im, -w[i].re+w[j].re);
}
}
Mint[] c = new Mint[A+B-1];
Mint basel = 1, baser = pow(Mint(1<<W), M);
P[] z = new P[N];
foreach (ph; 0..M) {
z[] = P(0, 0);
foreach (af; 0..ph+1) {
auto bf = ph - af;
foreach (i; 0..N) {
z[i] += x[af][i] * y[bf][i];
}
}
foreach (af; ph+1..M) {
auto bf = ph + M - af;
foreach (i; 0..N) {
z[i] += x[af][i] * y[bf][i] * P(0, 1);
}
}
fft!true(z);
foreach (i; 0..A+B-1) {
z[i] *= 1.0/N;
c[i] += Mint(cast(long)(round(z[i].re)))*basel;
c[i] += Mint(cast(long)(round(z[i].im)))*baser;
}
basel *= Mint(1<<W);
baser *= Mint(1<<W);
}
return c;
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/numeric/primitive.d */
// module dcomp.numeric.primitive;
import std.traits;
import std.bigint;
Unqual!T pow(T, U)(T x, U n)
if (!isFloatingPoint!T && (isIntegral!U || is(U == BigInt))) {
return pow(x, n, T(1));
}
Unqual!T pow(T, U, V)(T x, U n, V e)
if ((isIntegral!U || is(U == BigInt)) && is(Unqual!T == Unqual!V)) {
Unqual!T b = x, v = e;
Unqual!U m = n;
while (m) {
if (m & 1) v *= b;
b *= b;
m /= 2;
}
return v;
}
T powMod(T, U, V)(T x, U n, V md)
if (isIntegral!U || is(U == BigInt)) {
T r = T(1);
while (n) {
if (n & 1) r = (r*x)%md;
x = (x*x)%md;
n >>= 1;
}
return r % md;
}
ulong ulongPowMod(U)(ulong x, U n, ulong md)
if (isIntegral!U || is(U == BigInt)) {
// import dcomp.int128;
x %= md;
ulong r = 1;
while (n) {
if (n & 1) {
r = mul128(r, x).mod128(md);
}
x = mul128(x, x).mod128(md);
n >>= 1;
}
return r % md;
}
T lcm(T)(in T a, in T b) {
import std.numeric : gcd;
return a / gcd(a,b) * b;
}
T[3] extGcd(T)(in T a, in T b)
if (!isIntegral!T || isSigned!T)
{
if (b==0) {
return [T(1), T(0), a];
} else {
auto e = extGcd(b, a%b);
return [e[1], e[0]-a/b*e[1], e[2]];
}
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/ldc/inline.d */
// module dcomp.ldc.inline;
version(LDC) {
pragma(LDC_inline_ir)
R inlineIR(string s, R, P...)(P);
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/scanner.d */
// module dcomp.scanner;
// import dcomp.container.stack;
class Scanner {
import std.stdio : File;
import std.conv : to;
import std.range : front, popFront, array, ElementType;
import std.array : split;
import std.traits : isSomeChar, isStaticArray, isArray;
import std.algorithm : map;
File f;
this(File f) {
this.f = f;
}
char[512] lineBuf;
char[] line;
private bool succW() {
import std.range.primitives : empty, front, popFront;
import std.ascii : isWhite;
while (!line.empty && line.front.isWhite) {
line.popFront;
}
return !line.empty;
}
private bool succ() {
import std.range.primitives : empty, front, popFront;
import std.ascii : isWhite;
while (true) {
while (!line.empty && line.front.isWhite) {
line.popFront;
}
if (!line.empty) break;
line = lineBuf[];
f.readln(line);
if (!line.length) return false;
}
return true;
}
private bool readSingle(T)(ref T x) {
import std.algorithm : findSplitBefore;
import std.string : strip;
import std.conv : parse;
if (!succ()) return false;
static if (isArray!T) {
alias E = ElementType!T;
static if (isSomeChar!E) {
auto r = line.findSplitBefore(" ");
x = r[0].strip.dup;
line = r[1];
} else static if (isStaticArray!T) {
foreach (i; 0..T.length) {
bool f = succW();
assert(f);
x[i] = line.parse!E;
}
} else {
StackPayload!E buf;
while (succW()) {
buf ~= line.parse!E;
}
x = buf.data;
}
} else {
x = line.parse!T;
}
return true;
}
int read(T, Args...)(ref T x, auto ref Args args) {
if (!readSingle(x)) return 0;
static if (args.length == 0) {
return 1;
} else {
return 1 + read(args);
}
}
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/foundation.d */
// module dcomp.foundation;
static if (__VERSION__ <= 2070) {
/*
Copied by https://github.com/dlang/phobos/blob/master/std/algorithm/iteration.d
Copyright: Andrei Alexandrescu 2008-.
License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0).
*/
template fold(fun...) if (fun.length >= 1) {
auto fold(R, S...)(R r, S seed) {
import std.algorithm : reduce;
static if (S.length < 2) {
return reduce!fun(seed, r);
} else {
import std.typecons : tuple;
return reduce!fun(tuple(seed), r);
}
}
}
}
import core.bitop : popcnt;
static if (!__traits(compiles, popcnt(ulong.max))) {
public import core.bitop : popcnt;
int popcnt(ulong v) {
return popcnt(cast(uint)(v)) + popcnt(cast(uint)(v>>32));
}
}
bool poppar(ulong v) {
v^=v>>1;
v^=v>>2;
v&=0x1111111111111111UL;
v*=0x1111111111111111UL;
return ((v>>60) & 1) != 0;
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/container/stack.d */
// module dcomp.container.stack;
struct StackPayload(T, size_t MIN = 4) {
import core.exception : RangeError;
import std.algorithm : max;
import std.conv;
import std.range.primitives : ElementEncodingType;
import core.stdc.string : memcpy;
private T* _data;
private uint len, cap;
bool empty() const { return len == 0; }
@property size_t length() const { return len; }
alias opDollar = length;
ref inout(T) opIndex(size_t i) inout { return _data[i]; }
ref inout(T) front() inout { return _data[0]; }
ref inout(T) back() inout { assert(len); return _data[len-1]; }
void reserve(size_t nlen) {
import core.memory : GC;
if (nlen <= cap) return;
void* nx = GC.malloc(nlen * T.sizeof);
cap = nlen.to!uint;
if (len) memcpy(nx, _data, len * T.sizeof);
_data = cast(T*)(nx);
}
void free() {
import core.memory : GC;
GC.free(_data);
}
void opOpAssign(string op : "~")(T item) {
if (len == cap) {
reserve(max(MIN, cap*2));
}
_data[len++] = item;
}
void insertBack(T item) {
this ~= item;
}
void removeBack() {
len--;
}
void clear() {
len = 0;
}
inout(T)[] data() inout {
return (_data) ? _data[0..len] : null;
}
static struct RangeT(A) {
import std.traits : CopyTypeQualifiers;
alias E = CopyTypeQualifiers!(A, T);
A *p;
size_t a, b;
@property bool empty() const { return b <= a; }
@property size_t length() const { return b-a; }
@property RangeT save() { return RangeT(p, a, b); }
@property RangeT!(const A) save() const {
return typeof(return)(p, a, b);
}
alias opDollar = length;
@property ref inout(E) front() inout { return (*p)[a]; }
@property ref inout(E) back() inout { return (*p)[b-1]; }
void popFront() {
version(assert) if (empty) throw new RangeError();
a++;
}
void popBack() {
version(assert) if (empty) throw new RangeError();
b--;
}
ref inout(E) opIndex(size_t i) inout { return (*p)[i]; }
RangeT opSlice() { return this.save; }
RangeT opSlice(size_t i, size_t j) {
version(assert) if (i > j || a + j > b) throw new RangeError();
return typeof(return)(p, a+i, a+j);
}
RangeT!(const A) opSlice() const { return this.save; }
RangeT!(const A) opSlice(size_t i, size_t j) const {
version(assert) if (i > j || a + j > b) throw new RangeError();
return typeof(return)(p, a+i, a+j);
}
}
alias Range = RangeT!(StackPayload!T);
alias ConstRange = RangeT!(const StackPayload!T);
alias ImmutableRange = RangeT!(immutable StackPayload!T);
}
struct Stack(T) {
import core.exception : RangeError;
import core.memory : GC;
import std.range : ElementType, isInputRange;
import std.traits : isImplicitlyConvertible;
alias Payload = StackPayload!T;
alias Range = Payload.Range;
alias ConstRange = Payload.ConstRange;
alias ImmutableRange = Payload.ImmutableRange;
Payload* p;
private void I() { if (!p) p = new Payload(); }
private void C() const {
version(assert) if (!p) throw new RangeError();
}
private this(Payload* p) {
this.p = p;
}
this(U)(U[] values...) if (isImplicitlyConvertible!(U, T)) {
p = new Payload();
foreach (v; values) {
insertBack(v);
}
}
this(Range)(Range r)
if (isInputRange!Range &&
isImplicitlyConvertible!(ElementType!Range, T) &&
!is(Range == T[])) {
p = new Payload();
foreach (v; r) {
insertBack(v);
}
}
static Stack make() { return Stack(new Payload()); }
@property bool havePayload() const { return (p !is null); }
@property bool empty() const { return (!havePayload || p.empty); }
@property size_t length() const { return (havePayload ? p.length : 0); }
@property inout(T)[] data() inout {C; return (!p) ? [] : p.data; }
alias opDollar = length;
ref inout(T) opIndex(size_t i) inout {C; return (*p)[i]; }
ref inout(T) front() inout {C; return (*p)[0]; }
ref inout(T) back() inout {C; return (*p)[$-1]; }
void clear() { if (p) p.clear(); }
void insertBack(T v) {I; p.insertBack(v); }
alias stableInsertBack = insertBack;
void removeBack() {C; p.removeBack(); }
Range opSlice() {I; return Range(p, 0, length); }
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/int128.d */
// module dcomp.int128;
// import dcomp.array;
version(LDC) {
// import dcomp.ldc.inline;
}
version(LDC) version(X86_64) {
version = LDC_IR;
}
ulong[2] mul128(ulong a, ulong b) {
ulong[2] res;
version(LDC_IR) {
ulong upper, lower;
inlineIR!(`
%r0 = zext i64 %0 to i128
%r1 = zext i64 %1 to i128
%r2 = mul i128 %r1, %r0
%r3 = trunc i128 %r2 to i64
%r4 = lshr i128 %r2, 64
%r5 = trunc i128 %r4 to i64
store i64 %r3, i64* %2
store i64 %r5, i64* %3`, void)(a, b, &lower, &upper);
return [lower, upper];
} else version(D_InlineAsm_X86_64) {
ulong upper, lower;
asm {
mov RAX, a;
mul b;
mov lower, RAX;
mov upper, RDX;
}
return [lower, upper];
} else {
ulong B = 2UL^^32;
ulong[2] a2 = [a % B, a / B];
ulong[2] b2 = [b % B, b / B];
ulong[4] c;
foreach (i; 0..2) {
foreach (j; 0..2) {
c[i+j] += a2[i] * b2[j] % B;
c[i+j+1] += a2[i] * b2[j] / B;
}
}
foreach (i; 0..3) {
c[i+1] += c[i] / B;
c[i] %= B;
}
return [c[0] + c[1] * B, c[2] + c[3] * B];
}
}
ulong div128(ulong[2] a, ulong b) {
version(LDC_IR) {
return inlineIR!(`
%r0 = zext i64 %0 to i128
%r1 = zext i64 %1 to i128
%r2 = shl i128 %r1, 64
%r3 = add i128 %r0, %r2
%r4 = zext i64 %2 to i128
%r5 = udiv i128 %r3, %r4
%r6 = trunc i128 %r5 to i64
ret i64 %r6`,ulong)(a[0], a[1], b);
} else version(D_InlineAsm_X86_64) {
ulong upper = a[1], lower = a[0];
ulong res;
asm {
mov RDX, upper;
mov RAX, lower;
div b;
mov res, RAX;
}
return res;
} else {
if (b == 1) return a[0];
while (!(b & (1UL << 63))) {
a[1] <<= 1;
if (a[0] & (1UL << 63)) a[1] |= 1;
a[0] <<= 1;
b <<= 1;
}
ulong ans = 0;
foreach (i; 0..64) {
bool up = (a[1] & (1UL << 63)) != 0;
a[1] <<= 1;
if (a[0] & (1UL << 63)) a[1] |= 1;
a[0] <<= 1;
ans <<= 1;
if (up || b <= a[1]) {
a[1] -= b;
ans++;
}
}
return ans;
}
}
ulong mod128(ulong[2] a, ulong b) {
version(D_InlineAsm_X86_64) {
ulong upper = a[1], lower = a[0];
ulong res;
asm {
mov RDX, upper;
mov RAX, lower;
div b;
mov res, RDX;
}
return res;
} else {
return a[0] - div128(a, b) * b;
}
}
/* IMPORT /home/yosupo/Program/dcomp/source/dcomp/array.d */
// module dcomp.array;
T[N] fixed(T, size_t N)(T[N] a) {return a;}
/*
This source code generated by dcomp and include dcomp's source code.
dcomp's Copyright: Copyright (c) 2016- Kohei Morita. (https://github.com/yosupo06/dcomp)
dcomp's License: MIT License(https://github.com/yosupo06/dcomp/blob/master/LICENSE.txt)
*/
yosupot