結果
問題 | No.619 CardShuffle |
ユーザー |
|
提出日時 | 2017-12-23 22:14:27 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,112 ms / 3,000 ms |
コード長 | 8,617 bytes |
コンパイル時間 | 2,307 ms |
コンパイル使用メモリ | 215,792 KB |
最終ジャッジ日時 | 2025-01-05 06:18:40 |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 35 |
ソースコード
#include <bits/stdc++.h>#define show(x) cerr << #x << " = " << x << endlusing namespace std;using ll = long long;constexpr ll MOD = (ll)1e9 + 7LL;template <typename Base>class SegmentTree{public:using BaseAlgebra = Base;using AccMonoid = typename BaseAlgebra::AccMonoid;using OpMonoid = typename BaseAlgebra::OpMonoid;using T = typename BaseAlgebra::T;using F = typename BaseAlgebra::OpMonoid::T;SegmentTree(const int n) : data_num(n), height(__lg(2 * data_num - 1)), size(1 << (1 + height)), half(size >> 1), value(size, AccMonoid::identity()), action(size, OpMonoid::identity()) { assert(n > 0); }SegmentTree(const std::vector<T>& val) : data_num(val.size()), height(__lg(2 * data_num - 1)), size(1 << (1 + height)), half(size >> 1), value(size), action(size, OpMonoid::identity()){for (int data = 0; data < half; data++) {if (data < data_num) {value[data + half] = val[data];} else {value[data + half] = AccMonoid::identity();}}for (int node = half - 1; node >= 1; node--) {value[node] = acc(value[2 * node], value[2 * node + 1]);}}T get(const int a) const{assert(0 <= a and a < data_num);return accumulate(a, a + 1);}void set(const int a, const T& val){assert(0 <= a and a < data_num);const int node = a + half;value[node] = val;for (int i = node / 2; i > 0; i /= 2) {value[i] = acc(value[2 * i], value[2 * i + 1]);}}void set(const int a, const T&& val){assert(0 <= a and a < data_num);const int node = a + half;value[node] = val;for (int i = node / 2; i > 0; i /= 2) {value[i] = acc(value[2 * i], value[2 * i + 1]);}}T accumulate(const int a, const int b) const // Accumulate (a,b]{assert(0 <= a and a < b and b <= data_num);return accumulateRec(1, 0, half, a, b);}void modify(const int a, const int b, const F& f) // Apply f on (a,b]{assert(0 <= a and a < b and b <= data_num);if (f == OpMonoid::identity()) {return;}modifyRec(1, 0, half, a, b, f);}private:void modifyRec(const int int_index, const int int_left, const int int_right, const int mod_left, const int mod_right, const F& f){if (mod_left <= int_left and int_right <= mod_right) {value[int_index] = act(f, value[int_index]);action[int_index] = compose(f, action[int_index]);} else if (int_right <= mod_left or mod_right <= int_left) {// Do nothing} else {modifyRec(2 * int_index, int_left, (int_left + int_right) / 2, 0, half, action[int_index]);modifyRec(2 * int_index, int_left, (int_left + int_right) / 2, mod_left, mod_right, f);modifyRec(2 * int_index + 1, (int_left + int_right) / 2, int_right, 0, half, action[int_index]);modifyRec(2 * int_index + 1, (int_left + int_right) / 2, int_right, mod_left, mod_right, f);value[int_index] = acc(value[2 * int_index], value[2 * int_index + 1]);action[int_index] = OpMonoid::identity();}}T accumulateRec(const int int_index, const int int_left, const int int_right, const int mod_left, const int mod_right) const{if (mod_left <= int_left and int_right <= mod_right) {return value[int_index];} else if (int_right <= mod_left or mod_right <= int_left) {return AccMonoid::identity();} else {return act(action[int_index], acc(accumulateRec(2 * int_index, int_left, (int_left + int_right) / 2, mod_left, mod_right),accumulateRec(2 * int_index + 1, (int_left + int_right) / 2, int_right, mod_left, mod_right)));}}const int data_num; // Num of valid data on leaves.const int height;const int size;const int half;vector<T> value; // Tree for value(length: size)vector<F> action; // Tree for action(length: half)bool has_lazy;const AccMonoid acc{};const OpMonoid compose{};const BaseAlgebra act{};};struct ProductSum_Nothing {using X = ll;using T = tuple<ll, ll, ll>;struct AccMonoid {T operator()(const T& a, const T& b) const{const ll A = get<0>(a);const ll B = get<1>(a);const ll C = get<2>(a);const ll D = get<0>(b);const ll E = get<1>(b);const ll F = get<2>(b);if (A == -1 and B == -1 and C == -1) {return b;} else if (D == -1 and E == -1 and F == -1) {return a;}if (A != -1 and C != -1) {// (*A+B+C) (*D+E+F) = *A+(B+CD+E)+F// (*A+B+C) (*D) = *A+B+CD// (*A+B+C) (+E+F) = *A+(B+C+E)+Fif (D != -1 and F != -1) {return make_tuple(A, (B + C * D + E) % MOD, F);} else if (D != -1) {return make_tuple(A, B, C * D);} else {return make_tuple(A, (B + C + E) % MOD, F);}} else if (A != -1) {// (*A) (*D+E+F) = *AD+E+F// (*A) (*D) = *AD// (*A) (+E+F) = *A+E+Fif (D != -1 and F != -1) {return make_tuple((A * D) % MOD, E, F);} else if (D != -1) {return make_tuple((A * D) % MOD, 0, -1);} else {return make_tuple(A, E, F);}} else {// (+B+C) (*D+E+F) = +(B+CD+E)+F// (+B+C) (*D) = +B+CD// (+B+C) (+E+F) = +(B+C+E)+Fif (D != -1 and F != -1) {return make_tuple(-1, (B + C * D + E) % MOD, F);} else if (D != -1) {return make_tuple(-1, B, (C * D) % MOD);} else {return make_tuple(-1, (B + C + E) % MOD, F);}}}constexpr static T identity() { return make_tuple(-1, -1, -1); }};struct OpMonoid {using T = X;T operator()(const T& f1, const T& f2) const { return f1 + f2; }static constexpr T identity() { return 0; }};T operator()(const OpMonoid::T& /*f*/, const T& x) const { return x; }};int main(){int N;cin >> N;const int NUM = (N + 1) / 2;const int OP = (N - 1) / 2;vector<int> number(NUM, 0);vector<bool> op(OP + 1, true);for (int i = 0; i < N; i++) {char c;cin >> c;if (i % 2 == 0) {number[i / 2] = c - '0';} else {op[(i + 1) / 2] = c == '*';}}using T = tuple<ll, ll, ll>;vector<T> value(NUM);for (int i = 0; i < NUM; i++) {value[i] = (op[i] ? make_tuple(number[i], -1, -1) : make_tuple(-1, 0, number[i]));}SegmentTree<ProductSum_Nothing> seg(value);int Q;cin >> Q;for (int i = 0; i < Q; i++) {char c;cin >> c;ll X, Y;cin >> X >> Y;cerr << c << " " << X << " " << Y << endl;if (c == '?') {X /= 2, Y /= 2;const auto ans = seg.accumulate(X, Y + 1);cout << (max(0LL, get<0>(ans)) + max(0LL, get<1>(ans)) + max(0LL, get<2>(ans))) % MOD << endl;} else {if (X % 2 == 1) {X /= 2, Y /= 2;const ll vx = op[X] ? get<0>(seg.get(X)) : get<2>(seg.get(X));const ll vy = op[Y] ? get<0>(seg.get(Y)) : get<2>(seg.get(Y));seg.set(X, (op[X] ? make_tuple(vy, -1LL, -1LL) : make_tuple(-1LL, 0LL, vy)));seg.set(Y, (op[Y] ? make_tuple(vx, -1LL, -1LL) : make_tuple(-1LL, 0LL, vx)));} else {X /= 2, Y /= 2;const ll vx = op[X] ? get<0>(seg.get(X)) : get<2>(seg.get(X));const ll vy = op[Y] ? get<0>(seg.get(Y)) : get<2>(seg.get(Y));swap(op[X], op[Y]);seg.set(X, (op[X] ? make_tuple(vx, -1LL, -1LL) : make_tuple(-1LL, 0LL, vx)));seg.set(Y, (op[Y] ? make_tuple(vy, -1LL, -1LL) : make_tuple(-1LL, 0LL, vy)));}}}return 0;}