結果
問題 | No.635 自然門松列 |
ユーザー | schwarzahl |
提出日時 | 2018-01-22 20:31:43 |
言語 | Java21 (openjdk 21) |
結果 |
WA
|
実行時間 | - |
コード長 | 13,671 bytes |
コンパイル時間 | 2,648 ms |
コンパイル使用メモリ | 87,260 KB |
実行使用メモリ | 49,132 KB |
最終ジャッジ日時 | 2024-06-07 17:39:50 |
合計ジャッジ時間 | 9,670 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 140 ms
41,760 KB |
testcase_01 | AC | 143 ms
41,792 KB |
testcase_02 | WA | - |
testcase_03 | AC | 185 ms
42,796 KB |
testcase_04 | AC | 182 ms
42,400 KB |
testcase_05 | AC | 275 ms
47,332 KB |
testcase_06 | AC | 275 ms
47,556 KB |
testcase_07 | AC | 276 ms
47,488 KB |
testcase_08 | AC | 188 ms
42,776 KB |
testcase_09 | AC | 200 ms
42,820 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | AC | 272 ms
48,396 KB |
testcase_13 | AC | 275 ms
48,472 KB |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | AC | 137 ms
41,460 KB |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
ソースコード
package practice; import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Optional; import java.util.Scanner; import java.util.Set; import java.util.stream.IntStream; public class Main { public static void main(String[] args) { Main main = new Main(); main.solve(); } private void solve() { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); for (int try_num = 0; try_num < N; try_num++) { double x_1 = sc.nextDouble(); double x_2 = sc.nextDouble(); double x_3 = sc.nextDouble(); double y_1 = sc.nextDouble(); double y_2 = sc.nextDouble(); double y_3 = sc.nextDouble(); Double t_1l2_st = null; Double t_1l2_en = null; Double t_1g2_st = null; Double t_1g2_en = null; if (x_1 < x_2) { t_1l2_st = 0d; if (y_1 - y_2 > 0) { t_1l2_en = (x_2 - x_1) / (y_1 - y_2); t_1g2_st = t_1l2_en; } } else if (x_1 > x_2) { t_1g2_st = 0d; if (y_2 - y_1 > 0) { t_1g2_en = (x_1 - x_2) / (y_2 - y_1); t_1l2_st = t_1g2_en; } } else { if (y_1 > y_2) { t_1g2_st = 0d; } if (y_1 < y_2) { t_1l2_st = 0d; } } Double t_3l2_st = null; Double t_3l2_en = null; Double t_3g2_st = null; Double t_3g2_en = null; if (x_3 < x_2) { t_3l2_st = 0d; if (y_3 - y_2 > 0) { t_3l2_en = (x_2 - x_3) / (y_3 - y_2); t_3g2_st = t_3l2_en; } } else if (x_3 > x_2) { t_3g2_st = 0d; if (y_2 - y_3 > 0) { t_3g2_en = (x_3 - x_2) / (y_2 - y_3); t_3l2_st = t_3g2_en; } } else { if (y_3 > y_2) { t_1g2_st = 0d; } if (y_3 < y_2) { t_1l2_st = 0d; } } if (t_3l2_st != null) { if (isStair(t_1l2_st, t_3l2_en, t_1l2_en)) { System.out.println("YES"); continue; } } if (t_1l2_st != null) { if (isStair(t_3l2_st, t_1l2_en, t_3l2_en)) { System.out.println("YES"); continue; } } if (t_3g2_st != null) { if (isStair(t_1g2_st, t_3g2_en, t_1g2_en)) { System.out.println("YES"); continue; } } if (t_1g2_st != null) { if (isStair(t_3g2_st, t_1g2_en, t_3g2_en)) { System.out.println("YES"); continue; } } System.out.println("NO"); } } private boolean isStair(Double a, Double b, Double c) { if (a == null || b == null) { return false; } return (a < b) && (c == null || b < c); } interface CombCalculator { long comb(int n, int m); } /** * 組み合わせ計算をテーブルで実装したクラスです(MOD対応) * 前計算でO(N^2), combはO(1)で実行できます * sizeを2 * 1e4より大きい値で実行するとMLEの危険性があります */ class TableCombCalculator implements CombCalculator { long[][] table; int size; public TableCombCalculator(int size, long mod) { this.size = size; table = new long[size + 1][]; table[0] = new long[1]; table[0][0] = 1L; for (int n = 1; n <= size; n++) { table[n] = new long[n + 1]; table[n][0] = 1L; for (int m = 1; m < n; m++) { table[n][m] = (table[n - 1][m - 1] + table[n - 1][m]) % mod; } table[n][n] = 1L; } } @Override public long comb(int n, int m) { if (n > size) { throw new RuntimeException("n is greater than size."); } if (n < 0 || m < 0 || n < m) { return 0L; } return table[n][m]; } } interface Graph { void link(int from, int to, long cost); Optional<Long> getCost(int from, int to); int getVertexNum(); } interface FlowResolver { long maxFlow(int from, int to); } /** * グラフの行列による実装 * 接点数の大きいグラフで使うとMLEで死にそう */ class ArrayGraph implements Graph { private Long[][] costArray; private int vertexNum; public ArrayGraph(int n) { costArray = new Long[n][]; for (int i = 0; i < n; i++) { costArray[i] = new Long[n]; } vertexNum = n; } @Override public void link(int from, int to, long cost) { costArray[from][to] = new Long(cost); } @Override public Optional<Long> getCost(int from, int to) { return Optional.ofNullable(costArray[from][to]); } @Override public int getVertexNum() { return vertexNum; } } /** * DFS(深さ優先探索)による実装 * 計算量はO(E*MaxFlow)のはず (E:辺の数, MaxFlow:最大フロー) */ class DfsFlowResolver implements FlowResolver { private Graph graph; public DfsFlowResolver(Graph graph) { this.graph = graph; } /** * 最大フロー(最小カット)を求める * @param from 始点(source)のID * @param to 終点(target)のID * @return 最大フロー(最小カット) */ public long maxFlow(int from, int to) { long sum = 0L; long currentFlow; do { currentFlow = flow(from, to, Long.MAX_VALUE / 3, new boolean[graph.getVertexNum()]); sum += currentFlow; } while (currentFlow > 0); return sum; } /** * フローの実行 グラフの更新も行う * @param from 現在いる節点のID * @param to 終点(target)のID * @param current_flow ここまでの流量 * @param passed 既に通った節点か否かを格納した配列 * @return 終点(target)に流した流量/戻りのグラフの流量 */ private long flow(int from, int to, long current_flow, boolean[] passed) { passed[from] = true; if (from == to) { return current_flow; } for (int id = 0; id < graph.getVertexNum(); id++) { if (passed[id]) { continue; } Optional<Long> cost = graph.getCost(from, id); if (cost.orElse(0L) > 0) { long nextFlow = current_flow < cost.get() ? current_flow : cost.get(); long returnFlow = flow(id, to, nextFlow, passed); if (returnFlow > 0) { graph.link(from, id, cost.get() - returnFlow); graph.link(id, from, graph.getCost(id, from).orElse(0L) + returnFlow); return returnFlow; } } } return 0L; } } /** * 1-indexedのBIT配列 */ class BinaryIndexedTree { private long[] array; public BinaryIndexedTree(int size) { this.array = new long[size + 1]; } /** * 指定した要素に値を加算する * 計算量はO(logN) * @param index 加算する要素の添字 * @param value 加算する量 */ public void add(int index, long value) { for (int i = index; i < array.length; i += (i & -i)) { array[i] += value; } } /** * 1〜指定した要素までの和を取得する * 計算量はO(logN) * @param index 和の終端となる要素の添字 * @return 1〜indexまでの和 */ public long getSum(int index) { long sum = 0L; for (int i = index; i > 0; i -= (i & -i)) { sum += array[i]; } return sum; } } /** * 1-indexedの2次元BIT配列 */ class BinaryIndexedTree2D { private long[][] array; public BinaryIndexedTree2D(int size1, int size2) { this.array = new long[size1 + 1][]; for (int i = 1; i <= size1; i++) { this.array[i] = new long[size2 + 1]; } } /** * 指定した要素に値を加算する * 計算量はO(logN * logN) * @param index1 加算する要素の1次元目の添字 * @param index2 加算する要素の2次元目の添字 * @param value 加算する量 */ public void add(int index1, int index2, long value) { for (int i1 = index1; i1 < array.length; i1 += (i1 & -i1)) { for (int i2 = index2; i2 < array.length; i2 += (i2 & -i2)) { array[i1][i2] += value; } } } /** * (1,1)〜指定した要素までの矩形和を取得する * 計算量はO(logN * logN) * @param index1 和の終端となる要素の1次元目の添字 * @param index2 和の終端となる要素の2次元目の添字 * @return (1,1)〜(index1,index2)までの矩形和 */ public long getSum(int index1, int index2) { long sum = 0L; for (int i1 = index1; i1 > 0; i1 -= (i1 & -i1)) { for (int i2 = index2; i2 > 0; i2 -= (i2 & -i2)) { sum += array[i1][i2]; } } return sum; } } interface UnionFind { void union(int A, int B); boolean judge(int A, int B); Set<Integer> getSet(int id); } /** * ArrayUnionFindの拡張 * MapSetで根の添字から根にぶら下がる頂点の集合が取得できるようにした * getSetメソッドをO(logN * logN)に落とせているはず * ただしunionメソッドは2倍の計算量になっているので注意(オーダーは変わらないはず) */ class SetUnionFind extends ArrayUnionFind { Map<Integer, Set<Integer>> map; public SetUnionFind(int size) { super(size); map = new HashMap<>(); for (int i = 0; i < size; i++) { map.put(i, new HashSet<>()); map.get(i).add(i); } } @Override protected void unionTo(int source, int dest) { super.unionTo(source, dest); map.get(dest).addAll(map.get(source)); } @Override public Set<Integer> getSet(int id) { return map.get(root(id)); } } /** * 配列によるUnionFindの実装 * getSetメソッドはO(NlogN)なのでTLEに注意 */ class ArrayUnionFind implements UnionFind { int[] parent; int[] rank; int size; public ArrayUnionFind(int size) { parent = new int[size]; for (int i = 0; i < size; i++) { parent[i] = i; } rank = new int[size]; this.size = size; } @Override public void union(int A, int B) { int rootA = root(A); int rootB = root(B); if (rootA != rootB) { if (rank[rootA] < rank[rootB]) { unionTo(rootA, rootB); } else { unionTo(rootB, rootA); if (rank[rootA] == rank[rootB]) { rank[rootA]++; } } } } protected void unionTo(int source, int dest) { parent[source] = dest; } @Override public boolean judge(int A, int B) { return root(A) == root(B); } @Override public Set<Integer> getSet(int id) { Set<Integer> set = new HashSet<>(); IntStream.range(0, size).filter(i -> judge(i, id)).forEach(set::add); return set; } protected int root(int id) { if (parent[id] == id) { return id; } parent[id] = root(parent[id]); return parent[id]; } } /** * 素数のユーティリティ */ class PrimeNumberUtils { boolean[] isPrimeArray; List<Integer> primes; /** * 素数判定の上限となる値を指定してユーティリティを初期化 * @param limit 素数判定の上限(この値以上が素数であるか判定しない) */ public PrimeNumberUtils(int limit) { if (limit > 10000000) { System.err.println("上限の値が高すぎるため素数ユーティリティの初期化でTLEする可能性が大変高いです"); } primes = new ArrayList<>(); isPrimeArray = new boolean[limit]; if (limit > 2) { primes.add(2); isPrimeArray[2] = true; } for (int i = 3; i < limit; i += 2) { if (isPrime(i, primes)) { primes.add(i); isPrimeArray[i] = true; } } } public List<Integer> getPrimeNumberList() { return primes; } public boolean isPrime(int n) { return isPrimeArray[n]; } private boolean isPrime(int n, List<Integer> primes) { for (int prime : primes) { if (n % prime == 0) { return false; } if (prime > Math.sqrt(n)) { break; } } return true; } } interface BitSet { void set(int index, boolean bit); boolean get(int index); void shiftRight(int num); void shiftLeft(int num); void or(BitSet bitset); void and(BitSet bitset); } /** * Longの配列によるBitSetの実装 * get/setはO(1) * shift/or/andはO(size / 64) */ class LongBit implements BitSet { long[] bitArray; public LongBit(int size) { bitArray = new long[((size + 63) / 64)]; } @Override public void set(int index, boolean bit) { int segment = index / 64; int inIndex = index % 64; if (bit) { bitArray[segment] |= 1L << inIndex; } else { bitArray[segment] &= ~(1L << inIndex); } } @Override public boolean get(int index) { int segment = index / 64; int inIndex = index % 64; return (bitArray[segment] & (1L << inIndex)) != 0L; } @Override public void shiftRight(int num) { int shiftSeg = num / 64; int shiftInI = num % 64; for (int segment = 0; segment < bitArray.length; segment++) { int sourceSeg = segment + shiftSeg; if (sourceSeg < bitArray.length) { bitArray[segment] = bitArray[sourceSeg] >>> shiftInI; if (shiftInI > 0 && sourceSeg + 1 < bitArray.length) { bitArray[segment] |= bitArray[sourceSeg + 1] << (64 - shiftInI); } } else { bitArray[segment] = 0L; } } } @Override public void shiftLeft(int num) { int shiftSeg = num / 64; int shiftInI = num % 64; for (int segment = bitArray.length - 1; segment >= 0; segment--) { int sourceSeg = segment - shiftSeg; if (sourceSeg >= 0) { bitArray[segment] = bitArray[sourceSeg] << shiftInI; if (shiftInI > 0 && sourceSeg > 0) { bitArray[segment] |= bitArray[sourceSeg - 1] >>> (64 - shiftInI); } } else { bitArray[segment] = 0L; } } } public long getLong(int segment) { return bitArray[segment]; } @Override public void or(BitSet bitset) { if (!(bitset instanceof LongBit)) { return; } for (int segment = 0; segment < bitArray.length; segment++) { bitArray[segment] |= ((LongBit)bitset).getLong(segment); } } @Override public void and(BitSet bitset) { if (!(bitset instanceof LongBit)) { return; } for (int segment = 0; segment < bitArray.length; segment++) { bitArray[segment] &= ((LongBit)bitset).getLong(segment); } } } }