結果

問題 No.640 76本のトロンボーン
ユーザー mai
提出日時 2018-01-26 23:35:50
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
WA  
(最新)
AC  
(最初)
実行時間 -
コード長 11,483 bytes
コンパイル時間 12,517 ms
コンパイル使用メモリ 274,080 KB
最終ジャッジ日時 2025-01-05 07:58:52
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 14 WA * 1
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize ("O3")
#pragma GCC target ("avx")
#include "bits/stdc++.h" // define macro "/D__MAI"
using namespace std;
typedef long long int ll;
#define debugv(v) {printf("L%d %s > ",__LINE__,#v);for(auto e:v){cout<<e<<" ";}cout<<endl;}
#define debuga(m,w) {printf("L%d %s > ",__LINE__,#m);for(int x=0;x<(w);x++){cout<<(m)[x]<<" ";}cout<<endl;}
#define debugaa(m,h,w) {printf("L%d %s >\n",__LINE__,#m);for(int y=0;y<(h);y++){for(int x=0;x<(w);x++){cout<<(m)[y][x]<<" ";}cout<<endl;}}
#define ALL(v) (v).begin(),(v).end()
#define repeat(cnt,l) for(auto cnt=0ll;(cnt)<(l);++(cnt))
#define rrepeat(cnt,l) for(auto cnt=(l)-1;0<=(cnt);--(cnt))
#define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt))
#define MD 1000000007ll
#define PI 3.1415926535897932384626433832795
template<typename T1, typename T2> ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << "(" << p.first << ":" << p.second << ")"; return o;
    }
template<typename T> T& maxset(T& to, const T& val) { return to = max(to, val); }
template<typename T> T& minset(T& to, const T& val) { return to = min(to, val); }
void bye(string s, int code = 0) { cout << s << endl; exit(code); }
mt19937_64 randdev(8901016);
inline ll rand_range(ll l, ll h) {
return uniform_int_distribution<ll>(l, h)(randdev);
}
#if defined(_WIN32) || defined(_WIN64)
#define getchar_unlocked _getchar_nolock
#define putchar_unlocked _putchar_nolock
#elif defined(__GNUC__)
#else
#define getchar_unlocked getchar
#define putchar_unlocked putchar
#endif
namespace {
#define isvisiblechar(c) (0x21<=(c)&&(c)<=0x7E)
class MaiScanner {
public:
template<typename T> void input_integer(T& var) {
var = 0; T sign = 1;
int cc = getchar_unlocked();
for (; cc<'0' || '9'<cc; cc = getchar_unlocked())
if (cc == '-') sign = -1;
for (; '0' <= cc && cc <= '9'; cc = getchar_unlocked())
var = (var << 3) + (var << 1) + cc - '0';
var = var * sign;
}
inline int c() { return getchar_unlocked(); }
inline MaiScanner& operator>>(int& var) { input_integer<int>(var); return *this; }
inline MaiScanner& operator>>(long long& var) { input_integer<long long>(var); return *this; }
inline MaiScanner& operator>>(string& var) {
int cc = getchar_unlocked();
for (; !isvisiblechar(cc); cc = getchar_unlocked());
for (; isvisiblechar(cc); cc = getchar_unlocked())
var.push_back(cc);
return *this;
}
template<typename IT> void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; }
};
class MaiPrinter {
public:
template<typename T>
void output_integer(T var) {
if (var == 0) { putchar_unlocked('0'); return; }
if (var < 0)
putchar_unlocked('-'),
var = -var;
char stack[32]; int stack_p = 0;
while (var)
stack[stack_p++] = '0' + (var % 10),
var /= 10;
while (stack_p)
putchar_unlocked(stack[--stack_p]);
}
inline MaiPrinter& operator<<(char c) { putchar_unlocked(c); return *this; }
inline MaiPrinter& operator<<(int var) { output_integer<int>(var); return *this; }
inline MaiPrinter& operator<<(long long var) { output_integer<long long>(var); return *this; }
inline MaiPrinter& operator<<(char* str_p) { while (*str_p) putchar_unlocked(*(str_p++)); return *this; }
inline MaiPrinter& operator<<(const string& str) {
const char* p = str.c_str();
const char* l = p + str.size();
while (p < l) putchar_unlocked(*p++);
return *this;
}
template<typename IT> void join(IT begin, IT end, char sep = '\n') { for (auto it = begin; it != end; ++it) *this << *it << sep; }
};
}
MaiScanner scanner;
MaiPrinter printer;
/*
class DGraphF {
public:
typedef int cap_t;
size_t n_;
struct Arc {
int from, to;
//
cap_t left;
//
cap_t cap;
Arc(int from = 0, int to = 0, cap_t w = 1) :from(from), to(to), left(w), cap(w) {}
inline bool operator<(const Arc& a) const { return (left != a.left) ? left < a.left : (left<a.left) | (cap<a.cap) | (from<a.from) | (to<a.to
            ); }
inline bool operator==(const Arc& a) const { return (from == a.from) && (to == a.to) && (left == a.left) && (cap == a.cap); }
};
vector<vector<int>> vertex_to;
vector<vector<int>> vertex_from;
vector<Arc> edges;
DGraphF(int n = 1) :n_(n), vertex_to(n), vertex_from(n) { }
void connect(int from, int to, cap_t left) {
vertex_to[(size_t)from].push_back((int)edges.size()); // toto
vertex_from[(size_t)to].push_back((int)edges.size()); // fromfrom
edges.emplace_back(from, to, left);
}
};
void dinic(DGraphF &graph, vector<DGraphF::cap_t>& result, int i_source, int i_sink) {
assert(i_source != i_sink);
result.resize(graph.n_);
vector<int> dist(graph.n_);
queue<int> q;
vector<int> flag(graph.n_);
static function<DGraphF::cap_t(int, int, DGraphF::cap_t)> _dfs = [&](int u, int i_sink, DGraphF::cap_t mini) {
// DAG
// TODO:
if (i_sink == u) return mini;
if (flag[u]) return (DGraphF::cap_t) - 1;
flag[u] = true;
DGraphF::cap_t sumw = 0;
bool term = true;
for (int e : graph.vertex_to[u]) {
auto& edge = graph.edges[e];
if (edge.left > 0 && dist[u]>dist[edge.to]) {
DGraphF::cap_t w = (mini < 0) ? edge.left : min(edge.left, mini);
w = _dfs(edge.to, i_sink, w);
if (w == -1) continue;
edge.left -= w;
result[edge.to] += w;
sumw += w;
mini -= w;
term = false;
flag[u] = false; // TODO: ?
if (mini == 0) return sumw;
}
}
for (int e : graph.vertex_from[u]) {
auto& edge = graph.edges[e];
if (edge.cap>edge.left && dist[u]>dist[edge.from]) {
DGraphF::cap_t w = (mini < 0) ? (edge.cap - edge.left) : min(edge.cap - edge.left, mini);
w = _dfs(edge.from, i_sink, w);
if (w == -1) continue;
edge.left += w;
result[edge.to] -= w;
sumw += w;
mini -= w;
term = false;
flag[u] = false;
if (mini == 0) return sumw;
}
}
return term ? (DGraphF::cap_t)(-1) : sumw;
};
for (int distbegin = 0; ; distbegin += (int)graph.n_) {
q.emplace(i_sink); // bfssinksource
dist[i_sink] = distbegin + 1;
while (!q.empty()) {
int v = q.front();
q.pop();
for (int ie : graph.vertex_from[v]) {
const auto edge = graph.edges[ie];
if (0 < edge.left && dist[edge.from] <= distbegin) {
dist[edge.from] = dist[v] + 1;
q.emplace(edge.from);
}
}
for (int ie : graph.vertex_to[v]) {
const auto edge = graph.edges[ie];
if (edge.left < edge.cap && dist[edge.to] <= distbegin) {
dist[edge.to] = dist[v] + 1;
q.emplace(edge.to);
}
}
}
fill(flag.begin(), flag.end(), false);
if (dist[i_source] <= distbegin)
break;
else
result[i_source] += _dfs(i_source, i_sink, -1);
}
}
*/
ll m, n, kei;
string field[88];
// d=0 : x-axis
bool isok(int y, int x, int d, int len) {
repeat(i, len) {
if (field[y + i*(d)][x+i*(d^1)] == '#') return false;
}
return true;
}
int main() {
scanner >> n;
scanner.in(field, field + n);
int best = 0;
//
{
int top, bot, left_stat, right_stat, cnt;
top = bot = 0;
left_stat = right_stat = 0;
cnt = 0;
repeat(x, n) {
if (!isok(1, x, 1, n - 2)) continue;
if (x == 0)
left_stat = (field[0][x] == '.') | ((field[n - 1][x] == '.') << 1);
else if (x == n-1)
right_stat = (field[0][x] == '.') | ((field[n - 1][x] == '.') << 1);
else {
if (field[0][x] == '.') ++top;
if (field[n - 1][x] == '.') ++bot;
}
cnt += (field[0][x] == '.') || (field[n - 1][x] == '.');
}
maxset(best, cnt);
//
if (isok(0, 1, 0, n - 2)) {
if (field[0][0] == '.') {
// +++
maxset(best, 1 + ((left_stat&2)>>1) + bot + !!(right_stat));
}
if (field[0][n - 1] == '.') {
// +++
maxset(best, 1 + ((right_stat & 2) >> 1) + bot + !!(left_stat));
}
}
//
if (isok(n-1, 1, 0, n - 2)) {
if (field[n - 1][0] == '.') {
// +++
maxset(best, 1 + ((left_stat & 1)) + top + !!(right_stat));
}
if (field[n - 1][n - 1] == '.') {
// +++
maxset(best, 1 + ((right_stat & 1)) + top + !!(left_stat));
}
}
}
//
{
int left, right, top_stat, bot_stat, cnt;
left = right = 0;
top_stat = bot_stat = 0;
cnt = 0;
repeat(y, n) {
if (!isok(y, 1, 0, n - 2)) continue;
if (y == 0)
top_stat = (field[y][0] == '.') | ((field[y][n-1] == '.') << 1);
else if (y == n - 1)
bot_stat = (field[y][0] == '.') | ((field[y][n-1] == '.') << 1);
else {
if (field[y][0] == '.') ++left;
if (field[y][n-1] == '.') ++right;
}
cnt += (field[y][0] == '.') || (field[y][n - 1] == '.');
}
maxset(best, cnt);
//
if (isok(1, 0, 1, n - 2)) {
if (field[0][0] == '.') {
maxset(best, 1 + ((top_stat & 2) >> 1) + right + !!(bot_stat));
}
if (field[n-1][0] == '.') {
maxset(best, 1 + ((bot_stat & 2) >> 1) + right + !!(top_stat));
}
}
//
if (isok(1, n-1, 1, n - 2)) {
if (field[n - 1][0] == '.') {
maxset(best, 1 + ((top_stat & 1)) + left + !!(bot_stat));
}
if (field[n - 1][n - 1] == '.') {
maxset(best, 1 + ((bot_stat & 1)) + left + !!(top_stat));
}
}
}
// special case
{
bool ok = true;
repeat(i, n - 1) {
ok &= (field[0][i] == '.');
ok &= (field[i][n-1] == '.');
ok &= (field[n-1][n-1-i] == '.');
ok &= (field[n-1-i][0] == '.');
}
if (ok) maxset(best, 4);
}
cout << best << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0