結果
| 問題 |
No.650 行列木クエリ
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2018-02-09 23:49:25 |
| 言語 | Text (cat 8.3) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 15,549 bytes |
| コンパイル時間 | 51 ms |
| コンパイル使用メモリ | 6,824 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-10-09 04:35:40 |
| 合計ジャッジ時間 | 728 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 1 |
| other | WA * 10 |
ソースコード
#pragma GCC optimize ("O3")
#pragma GCC target ("avx")
#include "bits/stdc++.h" // define macro "/D__MAI"
using namespace std;
typedef long long int ll;
#define debug(v) {printf("L%d %s > ",__LINE__,#v);cout<<(v)<<endl;}
#define debugv(v) {printf("L%d %s > ",__LINE__,#v);for(auto e:(v)){cout<<e<<" ";}cout<<endl;}
#define debuga(m,w) {printf("L%d %s > ",__LINE__,#m);for(int x=0;x<(w);x++){cout<<(m)[x]<<" ";}cout<<endl;}
#define debugaa(m,h,w) {printf("L%d %s >\n",__LINE__,#m);for(int y=0;y<(h);y++){for(int x=0;x<(w);x++){cout<<(m)[y][x]<<" ";}cout<<endl;}}
#define ALL(v) (v).begin(),(v).end()
#define repeat(cnt,l) for(auto cnt=0ll;(cnt)<(l);++(cnt))
#define rrepeat(cnt,l) for(auto cnt=(l)-1;0<=(cnt);--(cnt))
#define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt))
#define diterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);--(cnt))
#define MD 1000000007ll
#define PI 3.1415926535897932384626433832795
template<typename T1, typename T2> ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << "(" << p.first << ":" << p.second << ")"; return o; }
template<typename T> T& maxset(T& to, const T& val) { return to = max(to, val); }
template<typename T> T& minset(T& to, const T& val) { return to = min(to, val); }
void bye(string s, int code = 0) { cout << s << endl; exit(code); }
mt19937_64 randdev(8901016);
inline ll rand_range(ll l, ll h) {
return uniform_int_distribution<ll>(l, h)(randdev);
}
#if defined(_WIN32) || defined(_WIN64)
#define getchar_unlocked _getchar_nolock
#define putchar_unlocked _putchar_nolock
#elif defined(__GNUC__)
#else
#define getchar_unlocked getchar
#define putchar_unlocked putchar
#endif
namespace {
#define isvisiblechar(c) (0x21<=(c)&&(c)<=0x7E)
class MaiScanner {
public:
template<typename T> void input_integer(T& var) {
var = 0; T sign = 1;
int cc = getchar_unlocked();
for (; cc<'0' || '9'<cc; cc = getchar_unlocked())
if (cc == '-') sign = -1;
for (; '0' <= cc && cc <= '9'; cc = getchar_unlocked())
var = (var << 3) + (var << 1) + cc - '0';
var = var * sign;
}
inline int c() { return getchar_unlocked(); }
inline MaiScanner& operator>>(int& var) { input_integer<int>(var); return *this; }
inline MaiScanner& operator>>(long long& var) { input_integer<long long>(var); return *this; }
inline MaiScanner& operator>>(string& var) {
int cc = getchar_unlocked();
for (; !isvisiblechar(cc); cc = getchar_unlocked());
for (; isvisiblechar(cc); cc = getchar_unlocked())
var.push_back(cc);
return *this;
}
template<typename IT> void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; }
};
class MaiPrinter {
public:
template<typename T>
void output_integer(T var) {
if (var == 0) { putchar_unlocked('0'); return; }
if (var < 0)
putchar_unlocked('-'),
var = -var;
char stack[32]; int stack_p = 0;
while (var)
stack[stack_p++] = '0' + (var % 10),
var /= 10;
while (stack_p)
putchar_unlocked(stack[--stack_p]);
}
inline MaiPrinter& operator<<(char c) { putchar_unlocked(c); return *this; }
inline MaiPrinter& operator<<(int var) { output_integer<int>(var); return *this; }
inline MaiPrinter& operator<<(long long var) { output_integer<long long>(var); return *this; }
inline MaiPrinter& operator<<(char* str_p) { while (*str_p) putchar_unlocked(*(str_p++)); return *this; }
inline MaiPrinter& operator<<(const string& str) {
const char* p = str.c_str();
const char* l = p + str.size();
while (p < l) putchar_unlocked(*p++);
return *this;
}
template<typename IT> void join(IT begin, IT end, char sep = '\n') { for (auto it = begin; it != end; ++it) *this << *it << sep; }
};
}
MaiScanner scanner;
MaiPrinter printer;
class Graph {
public:
size_t n;
vector<vector<int>> vertex_to;
Graph(size_t n = 1) :n(n), vertex_to(n) {}
void connect(int from, int to) {
vertex_to[(size_t)from].emplace_back(to);
vertex_to[(size_t)to].emplace_back(from);
}
void resize(size_t _n) {
n = _n;
vertex_to.resize(_n);
}
};
class llmod {
private:
ll val_;
inline ll cut(ll v) const { return ((v%MOD) + MOD) % MOD; }
public:
static const ll MOD = MD; // <=
llmod() : val_(0) {}
llmod(ll num) :val_(cut(num)) {}
llmod(const llmod& lm) : val_(lm.val_) {}
inline operator ll() const { return val_; }
inline ll operator *() const { return val_; }
inline llmod& operator=(const llmod& lm) { val_ = lm.val_; return *this; }
inline llmod& operator=(ll v) { val_ = cut(v); return *this; }
inline llmod& operator+=(ll v) { val_ = cut(val_ + v); return *this; }
inline llmod& operator+=(const llmod& l) { val_ = cut(val_ + l.val_); return *this; }
inline llmod& operator-=(ll v) { val_ = cut(val_ - v); return *this; }
inline llmod& operator-=(const llmod& l) { val_ = cut(val_ - l.val_); return *this; }
inline llmod& operator*=(ll v) { val_ = cut(val_ * v); return *this; }
inline llmod& operator*=(const llmod& l) { val_ = cut(val_ * l.val_); return *this; }
inline llmod& operator++() { val_ = (val_ + 1) % MOD; return *this; }
inline llmod operator++(int) { llmod t = *this; val_ = (val_ + 1) % MOD; return t; }
};
inline ostream& operator<<(ostream& os, const llmod& l) { os << *l; return os; }
inline llmod operator+(llmod t, const llmod& r) { return t += r; }
inline llmod operator-(llmod t, const llmod& r) { return t -= r; }
inline llmod operator*(llmod t, const llmod& r) { return t *= r; }
// MEMO : 逆元...powm(n,MD-2)
llmod pow(llmod x, ll p) {
llmod y = 1;
while (0 < p) {
if (p % 2)
y *= x;
x *= x;
p /= 2;
}
return y;
}
inline llmod& operator/=(llmod& l, const llmod& r) { return l *= pow(r, llmod::MOD - 2); }
template<typename T>
//typedef int T;
class SegmentTreeQ {
int size_;
vector<T> data_;
const function<T(T, T)> func_;
const T zero_;
public:
SegmentTreeQ(int n, function<T(T, T)> f, T z) : func_(f), zero_(z) {
size_ = 8;
while (size_ < n) size_ <<= 1;
data_.resize(size_ * 2, zero_);
}
void fill(T val) {
std::fill(data_.begin(), data_.end(), val);
}
inline T get_val(int index) const {
return data_[index + size_];
}
void set_val(int index, const T e) {
index += size_;
data_[index] = e;
while (1 < index) {
data_[index >> 1] = func_(data_[index], data_[index ^ 1]); // TODO : この部分の計算順序は正確か?
index >>= 1;
}
}
inline int get_range(int begin, int end) const {
T rl = zero_, rr = zero_;
begin += size_;
end += size_;
for (; begin < end; begin >>= 1, end >>= 1) {
if (begin & 1) rl = func_(data_[begin++], rl);
if (end & 1) rr = func_(rr, data_[--end]);
}
return func_(rl, rr);
}
};
template<typename T>
// typedef double T;
class Matrix {
public:
size_t height_, width_;
valarray<T> data_;
Matrix(size_t height, size_t width) :height_(height), width_(width), data_(height*width) {}
Matrix(size_t height, size_t width, const valarray<T>& data) :height_(height), width_(width), data_(data) {}
inline T& operator()(size_t y, size_t x) { return data_[y*width_ + x]; }
inline T operator() (size_t y, size_t x) const { return data_[y*width_ + x]; }
inline T& at(size_t y, size_t x) { return data_[y*width_ + x]; }
inline T at(size_t y, size_t x) const { return data_[y*width_ + x]; }
inline void resize(size_t h, size_t w) { height_ = h; width_ = w; data_.resize(h*w); }
inline void resize(size_t h, size_t w, T val) { height_ = h; width_ = w; data_.resize(h*w, val); }
inline void fill(T val) { data_ = val; }
Matrix<T>& setDiag(T val) { for (size_t i = 0, en = min(width_, height_); i < en; ++i)at(i, i) = val; return *this; }
void print(ostream& os) {
os << "- - -" << endl; // << setprecision(3)
for (size_t y = 0; y < height_; ++y) {
for (size_t x = 0; x < width_; ++x) {
os << setw(7) << at(y, x) << ' ';
}os << endl;
}
}
valarray<valarray<T>> to_valarray() const {
valarray<valarray<T>> work(height_);
for (size_t i = 0; i < height_; ++i) {
auto &v = work[i]; v.resize(height_);
for (size_t j = 0; j < width_; ++j)
v[j] = at(i, j);
} return work;
}
// mathematics
Matrix<T> pow(long long);
double det() const; T tr();
Matrix<T>& transpose_self(); Matrix<T> transpose() const;
struct LU {
size_t size;
vector<int> pivot;
vector<T> elem;
};
};
// IO
template<typename T> inline ostream& operator << (ostream& os, Matrix<T> mat) { mat.print(os); return os; }
// 掛け算
template<typename T> Matrix<T> multiply(const Matrix<T>& mat1, const Matrix<T>& mat2) {
assert(mat1.width_ == mat2.height_);
Matrix<T> result(mat1.height_, mat2.width_);
for (size_t i = 0; i < mat1.height_; i++) {
for (size_t j = 0; j < mat2.width_; j++) {
for (size_t k = 0; k < mat1.width_; k++) {
result(i, j) += mat1(i, k) * mat2(k, j);
}
}
}
return result;
}
template<typename T> valarray<T> multiply(const Matrix<T>& mat1, const valarray<T>& vec2) {
assert(mat1.width_ == vec2.size());
valarray<T> result(mat1.height_);
for (size_t i = 0, j; i < mat1.height_; i++) {
for (j = 0; j < mat1.width_; j++) {
result[i] += mat1(i, j) * vec2[j];
}
}
return result;
}
template<typename T> inline Matrix<T>& operator*=(Matrix<T>& mat1, Matrix<T>& mat2) { mat1 = multiply(mat1, mat2); return mat1; }
template<typename T> inline Matrix<T> operator*(Matrix<T>& mat1, Matrix<T>& mat2) { return multiply(mat1, mat2); }
// スカラー
template<typename T> inline Matrix<T>& operator+=(Matrix<T>& mat, T val) { mat.data_ += val; return mat; }
template<typename T> inline Matrix<T>& operator*=(Matrix<T>& mat, T val) { mat.data_ *= val; return mat; }
template<typename T> inline Matrix<T>& operator/=(Matrix<T>& mat, T val) { mat.data_ /= val; return mat; }
template<typename T> inline Matrix<T>& operator^=(Matrix<T>& mat, T val) { mat.data_ ^= val; return mat; }
// 行列
template<typename T> inline Matrix<T>& operator+=(Matrix<T>& mat1, Matrix<T>& mat2) { mat1.data_ += mat2.data_; return mat1; }
template<typename T> inline Matrix<T> operator+(Matrix<T>& mat1, Matrix<T>& mat2) { return Matrix<T>(mat1.height_, mat1.width_, mat1.data_ + mat2.data_); }
template<typename T> Matrix<T> Matrix<T>::pow(long long p) {
assert(height_ == width_);
Matrix<T> a = *this;
Matrix<T> b(height_, height_); b.setDiag(1);
while (0 < p) {
if (p % 2) {
b *= a;
}
a *= a; p /= 2;
}
return b;
}
template <typename T>
class SparseTable {
public:
int size;
vector<int> log2;
vector<T> data;
vector<T> dp;
SparseTable(int size) :size(size), log2(size + 1), data(size) {
// for fast calculate log2
for (int i = 2; i <= size; ++i) {
log2[i] = log2[i >> 1] + 1;
}
dp.resize(size*(log2[size] + 1));
}
inline T& operator[](size_t i) { return data[i]; }
inline T operator[](size_t i)const { return data[i]; }
void build() {
int l, i, f, b;
for (i = 0; i < size; i++) {
dp[i] = i;
}
for (l = 1; (1 << l) <= size; l++) {
for (i = 0; i + (1 << l) <= size; i++) {
f = dp[i + size * (l - 1)];
b = dp[(i + (1 << (l - 1))) + size * (l - 1)];
dp[i + size * l] = (data[f] <= data[b]) ? f : b; // minimum
}
}
}
// range [l,r)
int getminrangeIdx(int l, int r) const {
int lg = log2[r - l];
int i1 = dp[l + size * lg];
int i2 = dp[r - (1 << lg) + size * lg];
return (data[i1] <= data[i2]) ? i1 : i2; // minimum
}
};
class LCATable {
const Graph& graph_; // 構築時に参照するだけ
vector<int> visited_;
vector<int> visited_inv_;
SparseTable<int> depth_;
public:
LCATable(const Graph& g, int root = 0) :graph_(g), visited_(g.n * 2), visited_inv_(g.n), depth_(g.n * 2) { build(root); }
int _tour_dfs(int idx, int from = -1, int step = 0, int dep = 0) {
depth_[step] = dep;
visited_inv_[idx] = step;
visited_[step] = idx;
for (int to : graph_.vertex_to[idx]) {
if (to == from) continue;
step = _tour_dfs(to, idx, ++step, dep + 1);
depth_[step] = dep;
visited_[step] = idx;
}
return ++step;
}
void build(int root = 0) {
_tour_dfs(root);
depth_.build();
}
inline int operator()(int u, int v) {
return visited_inv_[u] <= visited_inv_[v] ? visited_[depth_.getminrangeIdx(visited_inv_[u], visited_inv_[v])] : operator()(v, u);
}
};
ll m, n, kei, qu;
Graph graph;
int hl[100010], hlid[100010], hlsize;
int hl_dec(int index = 0, int from = -1) {
int cnt = 1;
vector<int> partial_size(graph.vertex_to[index].size());
int i = 0;
for (auto to : graph.vertex_to[index]) {
if (from == to) { ++i; continue; }
int sz = hl_dec(to, index);
cnt += sz;
partial_size[i] = sz;
++i;
}
if (cnt > 1) {
auto it = max_element(ALL(partial_size));
int j = distance(it, partial_size.begin());
hl[index] = hl[graph.vertex_to[index][j]];
hlid[index] = hlid[graph.vertex_to[index][j]] + 1;
}else{
hl[index] = hlsize++;
}
return cnt;
}
int main() {
scanner >> n;
m = n - 1;
graph.resize(n);
repeat(i, n) {
int a, b;
scanner >> a >> b;
graph.connect(a, b);
}
hl_dec();
vector<SegmentTreeQ<Matrix<llmod>>> hl_segs;
const Matrix<llmod> one(2, 2, {1,0,0,1});
repeat(i, hlsize) {
hl_segs.emplace_back(hl[i], [](Matrix<llmod> x, Matrix<llmod> y) {return x * y; }, one);
}
LCATable lca(graph);
// ==============================
int qu;
scanner >> qu;
repeat(lop, qu) {
string type;
scanner >> type;
if (type[0] == 'x') {
int i;
ll a, b, c, d;
scanner >> i >> a >> b >> c >> d;
auto mat = Matrix<llmod>(2, 2, { a,b,c,d });
hl_segs[hl[i]].set_val(hlid[i], mat);
}
else {
int i, j, k;
scanner >> i >> j;
k = lca(i, j);
// 積順序を考慮しないのであれば,
// [i..root]の積 × [j..root]の積 ÷ [k..root] ÷ [k..root]
// 行列なので考える必要がある.
// - 逆方向に演算するセグ木メソッドの実装
// - 逆行列用のセグ木を用意
// [i..root]の積の計算に用いるHL分解パスを跨いでいく処理が未実装
}
}
return 0;
}