結果
| 問題 |
No.665 Bernoulli Bernoulli
|
| コンテスト | |
| ユーザー |
anta
|
| 提出日時 | 2018-03-09 22:52:02 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 2,000 ms |
| コード長 | 3,046 bytes |
| コンパイル時間 | 1,746 ms |
| コンパイル使用メモリ | 172,504 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-10-10 07:08:58 |
| 合計ジャッジ時間 | 2,475 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 15 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
#define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i))
#define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i))
#define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i))
static const int INF = 0x3f3f3f3f; static const long long INFL = 0x3f3f3f3f3f3f3f3fLL;
typedef vector<int> vi; typedef pair<int, int> pii; typedef vector<pair<int, int> > vpii; typedef long long ll;
template<typename T, typename U> static void amin(T &x, U y) { if (y < x) x = y; }
template<typename T, typename U> static void amax(T &x, U y) { if (x < y) x = y; }
template<int MOD>
struct ModInt {
static const int Mod = MOD;
unsigned x;
ModInt() : x(0) { }
ModInt(signed sig) { int sigt = sig % MOD; if (sigt < 0) sigt += MOD; x = sigt; }
ModInt(signed long long sig) { int sigt = sig % MOD; if (sigt < 0) sigt += MOD; x = sigt; }
int get() const { return (int)x; }
ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
ModInt inverse() const {
long long a = x, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b; std::swap(a, b);
u -= t * v; std::swap(u, v);
}
return ModInt(u);
}
};
typedef ModInt<1000000007> mint;
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {
ModInt<MOD> r = 1;
while (k) {
if (k & 1) r *= a;
a *= a;
k >>= 1;
}
return r;
}
void calculateInverses(vector<mint> &xs) {
int n = (int)xs.size();
vector<mint> prod(n + 1);
prod[0] = 1;
rep(i, n)
prod[i + 1] = prod[i] * xs[i];
mint invprod = prod[n].inverse();
for (int i = n - 1; i >= 0; -- i) {
mint x = xs[i];
xs[i] = invprod * prod[i];
invprod *= x;
}
}
mint solve(const vector<mint> &A, mint T) {
int N = (int)A.size() - 1;
if (T.get() <= N)
return A[T.get()];
mint numprod = 1;
rer(j, 0, N)
numprod *= T - j;
vector<mint> fact(N + 1);
fact[0] = 1;
rer(i, 1, N) fact[i] = fact[i - 1] * i;
vector<mint> numinvs(N + 1);
rer(i, 0, N)
numinvs[i] = T - i;
calculateInverses(numinvs);
vector<mint> deninvs(N + 1);
rer(i, 0, N)
deninvs[i] = fact[i] * (fact[N - i] * ((N - i) % 2 == 0 ? 1 : -1));
calculateInverses(deninvs);
mint ans;
rer(i, 0, N) {
mint num = numprod * numinvs[i];
ans += A[i] * num * deninvs[i];
}
return ans;
}
int main() {
long long N; int K;
while (~scanf("%lld%d", &N, &K)) {
vector<mint> A(K + 2);
reu(n, 1, A.size())
A[n] = A[n - 1] + (mint(n) ^ K);
mint ans = solve(A, N);
printf("%d\n", ans.get());
}
return 0;
}
anta