結果
| 問題 |
No.665 Bernoulli Bernoulli
|
| コンテスト | |
| ユーザー |
FF256grhy
|
| 提出日時 | 2018-04-11 23:54:49 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
MLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 3,148 bytes |
| コンパイル時間 | 1,980 ms |
| コンパイル使用メモリ | 170,628 KB |
| 実行使用メモリ | 765,412 KB |
| 最終ジャッジ日時 | 2024-06-26 21:17:32 |
| 合計ジャッジ時間 | 26,482 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 MLE * 2 |
| other | MLE * 15 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
typedef long long signed int LL;
typedef long long unsigned int LU;
#define incID(i, l, r) for(int i = (l) ; i < (r); i++)
#define incII(i, l, r) for(int i = (l) ; i <= (r); i++)
#define decID(i, l, r) for(int i = (r) - 1; i >= (l); i--)
#define decII(i, l, r) for(int i = (r) ; i >= (l); i--)
#define inc(i, n) incID(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec(i, n) decID(i, 0, n)
#define dec1(i, n) decII(i, 1, n)
#define inII(v, l, r) ((l) <= (v) && (v) <= (r))
#define inID(v, l, r) ((l) <= (v) && (v) < (r))
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define FI first
#define SE second
#define PQ priority_queue
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
#define FOR(it, v) for(auto it = v.begin(); it != v.end(); ++it)
#define RFOR(it, v) for(auto it = v.rbegin(); it != v.rend(); ++it)
template<typename T> bool setmin(T & a, T b) { if(b < a) { a = b; return true; } else { return false; } }
template<typename T> bool setmax(T & a, T b) { if(b > a) { a = b; return true; } else { return false; } }
template<typename T> bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } }
template<typename T> bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } }
template<typename T> T gcd(T a, T b) { return (b == 0 ? a : gcd(b, a % b)); }
template<typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
// ---- ----
LL MOD;
LL mod(LL x, LL m = MOD) { return (x % m + m) % m; }
pair<LL, LL> ex_gcd(LL a, LL b) {
if(b == 0) { return MP(1, 0); }
auto p = ex_gcd(b, a % b);
return MP(p.SE, p.FI - (a / b) * p.SE);
}
LL inv(LL x, LL m = MOD) {
assert(gcd(x, m) == 1);
auto p = ex_gcd(x, m);
return mod(p.FI, m);
}
LL promod(LL x, LL y, LL m = MOD) { return mod((x % m) * (y % m), m); }
LL divmod(LL x, LL y, LL m = MOD) { return promod(x, inv(y, m), m); }
LL ex(LL x, LL y, LL mod = MOD) {
LL z[64], v = 1;
inc(i, 64) { z[i] = (i == 0 ? x : z[i - 1] * z[i - 1]) % mod; }
inc(i, 64) { if((y >> i) & 1) { (v *= z[i]) %= mod; } }
return v;
}
// ---- ----
const int LIM = 10000;
LL C[LIM + 2][LIM + 2];
LL B[LIM + 2];
void calc_comb(LL n, LL m) {
incII(i, 0, n) {
incII(j, 0, i) {
C[i][j] = (i == 0 || j == 0 ? 1 : (C[i - 1][j] + C[i - 1][j - 1])) % m;
}
}
}
void calc_bernoulli_number_mod(LL n, LL m, int sgn = -1) { // calc: [0, n], m: prime number
// sgn == -1: B- (B(1) == -1/2)
// sgn == +1: B+ (B(1) == +1/2)
assert(abs(sgn) == 1);
incII(i, 0, n) {
if(i == 0) { B[0] = 1; }
else {
B[i] = 0;
inc(k, i) { (B[i] += C[i + 1][k] * B[k]) %= m; }
B[i] = divmod(-B[i], i + 1, m);
}
}
if(sgn == +1) { B[1] = divmod(+1, 2, m); }
}
LL sum_power(LL n, LL k, LL m) { // (1^k + 2^k + ... + n^k) % m
assert(k <= LIM);
calc_comb(k + 1, m);
calc_bernoulli_number_mod(k, m, +1);
LL ans = 0;
incII(i, 0, k) { (ans += C[k + 1][i] * B[i] % m * ex(n, k + 1 - i, m)) %= m; }
return divmod(ans, k + 1, m);
}
int main() {
LL n, k;
cin >> n >> k;
cout << sum_power(n, k, 1e9 + 7) << endl;
return 0;
}
FF256grhy