結果
| 問題 |
No.675 ドットちゃんたち
|
| コンテスト | |
| ユーザー |
ojisan_IT
|
| 提出日時 | 2018-06-19 21:08:13 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 216 ms / 2,000 ms |
| コード長 | 2,638 bytes |
| コンパイル時間 | 1,906 ms |
| コンパイル使用メモリ | 182,224 KB |
| 実行使用メモリ | 10,092 KB |
| 最終ジャッジ日時 | 2024-06-30 17:18:10 |
| 合計ジャッジ時間 | 4,607 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 8 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
using ll = long long;
template<class T> using vt = vector<T>;
template<class T> using vvt = vector<vt<T>>;
template<class T> using ttt = tuple<T,T>;
using tii = tuple<int,int>;
using vi = vector<int>;
#define rep(i,n) for(int i=0;i<(int)(n);i++)
#define pb push_back
#define mt make_tuple
#define ALL(a) (a).begin(),(a).end()
#define FST first
#define SEC second
#define DEB cerr<<"!"<<endl
#define SHOW(a,b) cerr<<(a)<<" "<<(b)<<endl
#define DIV int(1e9+7)
const int INF = (INT_MAX/2);
const ll LLINF = (LLONG_MAX/2);
const double eps = 1e-8;
//const double PI = M_PI;
inline ll pow(ll x,ll n,ll m){ll r=1;while(n>0){if((n&1)==1)r=r*x%m;x=x*x%m;n>>=1;}return r%m;}
inline ll lcm(ll d1, ll d2){return d1 / __gcd(d1, d2) * d2;}
/*Coding Space*/
using Array = vector<ll>;
using Matrix = vector<Array>;
// O( n )
Matrix identity(int n) {
Matrix A(n, Array(n));
for (int i = 0; i < n; ++i) A[i][i] = 1;
return A;
}
// O( n^2 )
Array mul(const Matrix &A, const Array &x) {
Array y(A.size());
for (int i = 0; i < (int)A.size(); ++i)
for (int j = 0; j < (int)A[0].size(); ++j)
y[i] += A[i][j] * x[j];
return y;
}
// O( n^3 )
Matrix mul(const Matrix &A, const Matrix &B) {
Matrix C(A.size(), Array(B[0].size()));
for (int i = 0; i < (int)C.size(); ++i)
for (int j = 0; j < (int)C[i].size(); ++j)
for (int k = 0; k < (int)A[i].size(); ++k)
C[i][j] += A[i][k] * B[k][j];
return C;
}
// O( n^3 log e )
Matrix pow(const Matrix &A, int e) {
return e == 0 ? identity(A.size()) :
e % 2 == 0 ? pow(mul(A, A), e/2) : mul(A, pow(A, e-1));
}
// 同次変換行列を使うやつ
const Matrix Rotate = {
{0,1,0},
{-1,0,0},
{0,0,1}
};
Matrix Move = {
{1,0,0},
{0,1,0},
{0,0,1}
};
void parallel_move(ll x, ll y, Matrix& a){
a[0][2] = x;
a[1][2] = y;
return;
}
int main(){
ll n,px,py; cin >> n >> px >> py;
vt<Array> ans;
Array now = {px,py,1};
const Array fst = {px,py,1};
Matrix t ={{1,0,0},{0,1,0},{0,0,1}};
vi o(n); vt<ll> a;
rep(i,n){
cin >> o[i];
if(o[i] == 1 || o[i] == 2){ll t; cin >> t;a.pb(t);}
}
int cnt = a.size()-1;
for(int ii = n-1; ii >= 0; ii--){
int ope = o[ii];
if(ope == 3){
t = mul(t, Rotate);
now = mul(t, fst);
}else if(ope == 2){
ll y = a[cnt--];
parallel_move(0,y,Move);
t = mul(t, Move);
now = mul(t,fst);
}else{
ll x = a[cnt--];
parallel_move(x,0,Move);
t = mul(t, Move);
now = mul(t, fst);
}
ans.pb(now);
}
for(int i = n-1; i >= 0; i--){
cout << ans[i][0] << " " << ans[i][1] << endl;
}
}
ojisan_IT