結果
問題 | No.134 走れ!サブロー君 |
ユーザー | tu-sa |
提出日時 | 2018-06-30 05:33:03 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 7,535 bytes |
コンパイル時間 | 1,066 ms |
コンパイル使用メモリ | 121,388 KB |
最終ジャッジ日時 | 2024-11-14 20:31:57 |
合計ジャッジ時間 | 1,484 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp: In function 'std::ostream& operator<<(std::ostream&, const iter_pair_t<T>&)': main.cpp:82:33: error: 'ostream_iterator' was not declared in this scope 82 | std::copy(v.beg, v.end, ostream_iterator<typename decltype(v.beg)::reference>(out, " ")); | ^~~~~~~~~~~~~~~~ main.cpp:29:1: note: 'std::ostream_iterator' is defined in header '<iterator>'; did you forget to '#include <iterator>'? 28 | #include <array> +++ |+#include <iterator> 29 | using namespace std; main.cpp:82:85: error: expected '(' before '>' token 82 | std::copy(v.beg, v.end, ostream_iterator<typename decltype(v.beg)::reference>(out, " ")); | ^ | (
ソースコード
//////////////////////////////////////// /// tu3 pro-con template /// //////////////////////////////////////// #include <cassert> #include <cstdio> #include <cstring> #include <cmath> #include <iostream> #include <iomanip> #include <sstream> #include <algorithm> #include <numeric> #include <functional> #include <vector> #include <queue> #include <string> #include <complex> #include <stack> #include <set> #include <map> #include <list> #include <unordered_map> #include <unordered_set> #include <bitset> #include <regex> #include <type_traits> #include <mutex> #include <array> using namespace std; //// MACRO //// #define countof(a) (sizeof(a)/sizeof(a[0])) #define REP(i,n) for (int i = 0; i < (n); i++) #define RREP(i,n) for (int i = (n)-1; i >= 0; i--) #define FOR(i,s,n) for (int i = (s); i < (n); i++) #define RFOR(i,s,n) for (int i = (n)-1; i >= (s); i--) #define pos(c,i) c.being() + (i) #define allof(c) c.begin(), c.end() #define aallof(a) a, countof(a) #define partof(c,i,n) c.begin() + (i), c.begin() + (i) + (n) #define apartof(a,i,n) a + (i), a + (i) + (n) typedef unsigned int uint; typedef long long llong; typedef unsigned long long ullong; #define long long long #define EPS 1e-9 #define INF (1L << 28) #define LINF (1LL << 60) #define PREDICATE(t,a,exp) [&](const t & a) -> bool { return exp; } #define COMPARISON_T(t) bool(*)(const t &, const t &) #define COMPARISON(t,a,b,exp) [&](const t & a, const t & b) -> bool { return exp; } #define CONVERTER(TSrc,t,TDest,exp) [&](const TSrc &t)->TDest { return exp; } inline int sign_of(double x) { return abs(x) < EPS ? 0 : x > 0 ? 1 : -1; } inline bool inRange(int val, int min, int max) { return val >= min && val < max; } inline bool inRange(double val, double min, double max) { return val - min > -EPS && val - max < EPS; } inline bool inRange(int x, int y, int W, int H) { return x >= 0 && x < W && y >= 0 && y < H; } // W,H含まない template <class T> struct vevector : public vector<vector<T>> { vevector(int n = 0, int m = 0, const T &initial = T()) : vector<vector<T>>(n, vector<T>(m, initial)) { } }; template <class T> struct vevevector : public vector<vevector<T>> { vevevector(int n = 0, int m = 0, int l = 0, const T &initial = T()) : vector<vevector<T>>(n, vevector<T>(m, l, initial)) { } }; template <class T> struct vevevevector : public vector<vevevector<T>> { vevevevector(int n = 0, int m = 0, int l = 0, int k = 0, const T &initial = T()) : vector<vevevector<T>>(n, vevevector<T>(m, l, k, initial)) { } }; //// i/o helper //// namespace std { template <class T1, class T2> inline istream & operator >> (istream & in, pair<T1, T2> &p) { in >> p.first >> p.second; return in; } template <class T1, class T2> inline ostream & operator << (ostream &out, const pair<T1, T2> &p) { out << p.first << " " << p.second; return out; } } template <class T> T read() { T t; cin >> t; return t; } template <class T> vector<T> read(int n) { vector<T> v; v.reserve(n); REP(i, n) { v.push_back(read<T>()); } return v; } template <class T> vevector<T> read(int n, int m) { vevector<T> v; REP(i, n) v.push_back(read<T>(m)); return v; } template <class T> vector<T> readjag() { return read<T>(read<int>()); } template <class T> vevector<T> readjag(int n) { vevector<T> v; v.reserve(n); REP(i, n) v.push_back(readjag<T>()); return v; } template <class T> struct iter_pair_t { T beg, end; }; template <class T> iter_pair_t<T> iter_pair(T beg, T end) { return iter_pair_t<T>{beg, end}; } template <class T> ostream & operator << (ostream &out, const iter_pair_t<T> &v) { std::copy(v.beg, v.end, ostream_iterator<typename decltype(v.beg)::reference>(out, " ")); return out; } template <class T1> ostream & operator << (ostream &out, const vector<T1> &v) { return out << iter_pair(begin(v), end(v)); } template <class T1> ostream & operator << (ostream &out, const set<T1> &v) { return out << iter_pair(begin(v), end(v)); } template <class T1, class T2> ostream & operator << (ostream &out, const map<T1, T2> &v) { return out << iter_pair(begin(v), end(v)); } struct _Reader { istream &cin; template <class T> _Reader operator ,(T &rhs) { cin >> rhs; return *this; } }; struct _Writer { ostream &cout; bool f{ false }; template <class T> _Writer operator ,(const T &rhs) { cout << (f ? " " : "") << rhs; f = true; return *this; } }; #define READ(t,...) t __VA_ARGS__; (_Reader{cin}), __VA_ARGS__ #define WRITE(...) (_Writer{cout}), __VA_ARGS__; cout << '\n' #define DEBUG(...) (_Writer{cerr}), __VA_ARGS__; cerr << '\n' void solve(); int main() { //auto temp = ctype<char>::classic_table(); //vector<ctype<char>::mask> bar(temp, temp + ctype<char>::table_size); //bar['.'] |= ctype_base::space; //cin.imbue(locale(cin.getloc(), new ctype<char>(bar.data()))); cin.tie(0); ios_base::sync_with_stdio(false); cout << setprecision(std::numeric_limits<double>::max_digits10); solve(); return 0; } // uint bit permutation struct BitPermutation { #ifdef _MSC_VER #pragma push_macro("long") #undef long static inline unsigned int __builtin_ctz(unsigned int x) { unsigned long r; _BitScanForward(&r, x); return r; } #pragma pop_macro("long") #endif using TVal = unsigned int; static int bsf(uint x) { return x ? __builtin_ctz(x) : -1; } static TVal next_bit_permutation(TVal x) { TVal t = x | (x - 1); TVal p = (~t & -~t) - 1; return (t + 1) | (p >> (bsf(x) + 1)); } struct it { TVal val; TVal operator *() const { return val; } it& operator ++() { val = next_bit_permutation(val); return *this; } bool operator != (it o) const { return val != o.val; } }; it s, e; BitPermutation(int n, int k) : s{ (TVal(1) << k) - 1 } , e{ k > 0 ? TVal(1) << n | ((TVal(1) << (k - 1)) - 1) : next_bit_permutation(0) } { assert(n >= k); } it begin() const { return s; } it end() const { return e; } }; // ヘルドカープ (改) // TSP (巡回セールスマン問題)など解ける // O(N^2 * 2^N) (N<=16くらいまで: N=15で700万 N=16で1677万 N=17で3800万) // TDistance g: g(i,j, n) で 状態nのときの i -> j へのコストを返すファンクタ (0<=i,j<N) using TCost = double; template <class TDistance> TCost HeldKarp(int N, TDistance g, int start = 0, bool needToReturnStart = false) { vevector<TCost> dp(1 << N, N, INF); dp[1 << start][start] = 0; FOR(i, 1, N) { for (int n : BitPermutation(N, i)) { REP(from, N) { if (dp[n][from] >= INF) { continue; } REP(to, N) { if (n & 1 << to) { continue; } int next = n | 1 << to; TCost dist = dp[n][from] + g(from, to, n); if (dist < dp[next][to]) { dp[next][to] = dist; } } } } } TCost ans = INF; REP(i, N) { ans = min(ans, dp[(1 << N) - 1][i] + (needToReturnStart ? g(i, start, (1 << N) - 1) : 0)); } return ans; } //////////////////// /// template end /// //////////////////// void solve() { vector<int> X, Y; vector<double> W; { READ(int, x, y); X.push_back(x); Y.push_back(y); W.push_back(0); } READ(int, N); REP(i, N) { READ(int, x, y); READ(double, w); X.push_back(x); Y.push_back(y); W.push_back(w); } N++; vevector<int> distance(N, N); REP(i, N) { REP(j, N) { distance[i][j] = abs(X[i] - X[j]) + abs(Y[i] - Y[j]); } } vector<double> weight(1 << N, 0.0); REP(i, 1 << N) { REP(j, N) { if ( (i & 1 << j) == 0) { weight[i] += W[j]; } } } double ans = HeldKarp(N, [&](int i, int j, int n) -> double { return distance[i][j] * (weight[n] + 100.0) / 120.0 + W[j]; }, 0, true); WRITE(ans); }