結果

問題 No.165 四角で囲え!
ユーザー tu-satu-sa
提出日時 2018-07-11 05:02:35
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 520 ms / 5,000 ms
コード長 7,915 bytes
コンパイル時間 2,302 ms
コンパイル使用メモリ 195,868 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-14 14:31:14
合計ジャッジ時間 6,195 ms
ジャッジサーバーID
(参考情報)
judge6 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 165 ms
6,812 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 2 ms
6,944 KB
testcase_05 AC 234 ms
6,940 KB
testcase_06 AC 69 ms
6,940 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 103 ms
6,944 KB
testcase_12 AC 41 ms
6,944 KB
testcase_13 AC 50 ms
6,944 KB
testcase_14 AC 32 ms
6,940 KB
testcase_15 AC 30 ms
6,944 KB
testcase_16 AC 320 ms
6,940 KB
testcase_17 AC 259 ms
6,940 KB
testcase_18 AC 520 ms
6,940 KB
testcase_19 AC 293 ms
6,944 KB
testcase_20 AC 265 ms
6,944 KB
testcase_21 AC 266 ms
6,944 KB
testcase_22 AC 265 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

////////////////////////////////////////
///  tu3 pro-con template            ///
////////////////////////////////////////
#include "bits/stdc++.h"
using namespace std;

// -- loop macros -- //
#define REP(i,n) for (int i = 0; i < (n); i++)
#define RREP(i,n) for (int i = (n)-1; i >= 0; i--)
#define FOR(i,s,n) for (int i = (int)(s); i < (n); i++)
#define RFOR(i,s,n) for (int i = (n)-1; i >= (s); i--)
#define FOREACH(i,container) for (auto &&i : container)
#define allof(c) c.begin(), c.end()
#define partof(c,i,n) c.begin() + (i), c.begin() + (i) + (n)

// -- functors -- //
#define PREDICATE(t,a,exp) [&](const t & a) -> bool { return exp; }
#define COMPARISON(t,a,b,exp) [&](const t & a, const t & b) -> bool { return exp; }

#define PRED(a,exp) [&](const auto & a) -> bool { return exp; }
#define COMP(a,b,exp) [&](const auto & a, const auto & b) -> bool { return exp; }
#define CONV1(a,exp) [&](const auto & a) -> auto { return exp; }
#define CONV2(a,b,exp) [&](const auto & a, const auto & b) -> auto { return exp; }
#define CONV3(a,b,c,exp) [&](const auto & a, const auto & b, const auto & c) -> auto { return exp; }

// -- typedefs -- //
#define EPS 1e-9

typedef unsigned int uint;
typedef long long llong;
typedef unsigned long long ullong;

// -- I/O Helper -- //
struct _Reader { _Reader(istream &cin) :cin(cin) {} istream &cin; template <class T> _Reader operator ,(T &rhs) { cin >> rhs; return *this; } };
struct _Writer { _Writer(ostream &cout) :cout(cout) {} ostream &cout; bool f{ false }; template <class T> _Writer operator ,(const T &rhs) { cout << (f ? " " : "") << rhs; f = true; return *this; } };
#define READ(t,...) t __VA_ARGS__; (_Reader{cin}), __VA_ARGS__
#define WRITE(...) (_Writer{cout}), __VA_ARGS__; cout << '\n'
#define DEBUG(...) (_Writer{cerr}), __VA_ARGS__; cerr << '\n'

// -- vevector -- //
template <class T> struct vevector : public vector<vector<T>> { vevector(int n = 0, int m = 0, const T &initial = T()) : vector<vector<T>>(n, vector<T>(m, initial)) { } };
template <class T> struct vevevector : public vector<vevector<T>> { vevevector(int n = 0, int m = 0, int l = 0, const T &initial = T()) : vector<vevector<T>>(n, vevector<T>(m, l, initial)) { } };
template <class T> struct vevevevector : public vector<vevevector<T>> { vevevevector(int n = 0, int m = 0, int l = 0, int k = 0, const T &initial = T()) : vector<vevevector<T>>(n, vevevector<T>(m, l, k, initial)) { } };

namespace std {
	template <class T1, class T2> inline istream & operator >> (istream & in, pair<T1, T2> &p) { in >> p.first >> p.second; return in; }
	template <class T1, class T2> inline ostream & operator << (ostream &out, const pair<T1, T2> &p) { out << p.first << " " << p.second; return out; }
}

template <class T> T read() { T t; cin >> t; return t; }
template <class T> vector<T> read(int n) { vector<T> v; REP(i, n) { v.push_back(read<T>()); } return v; }
template <class T> vevector<T> read(int n, int m) { vevector<T> v; REP(i, n) v.push_back(read<T>(m)); return v; }
template <class T> vector<T> readjag() { return read<T>(read<int>()); }
template <class T> vevector<T> readjag(int n) { vevector<T> v; REP(i, n) v.push_back(readjag<T>()); return v; }

template <class T> struct iter_pair_t { T beg, end; };
template <class T> iter_pair_t<T> iter_pair(T beg, T end) { return iter_pair_t<T>{beg, end}; }
template <class T> ostream & operator << (ostream &out, const iter_pair_t<T> &v) { if (v.beg != v.end) { out << ++v.beg; while (v.beg != v.end) { out << " " << ++v.beg; } } return out; }
template <class T1> ostream & operator << (ostream &out, const vector<T1> &v) { return out << iter_pair(begin(v), end(v)); }

// -- etc -- //
template <class T> T infinity_value();
#define DEFINE_INFINITY_VALUE(T, val) template <> constexpr T infinity_value<T>() { return (val); }
DEFINE_INFINITY_VALUE(int, 1 << 28);
DEFINE_INFINITY_VALUE(uint, 1u << 28);
DEFINE_INFINITY_VALUE(llong, 1ll << 60);
DEFINE_INFINITY_VALUE(ullong, 1ull << 60);
DEFINE_INFINITY_VALUE(double, HUGE_VAL);
DEFINE_INFINITY_VALUE(float, HUGE_VAL);
#define INF(T) infinity_value<T>()

inline int sign_of(double x) { return (abs(x) < EPS ? 0 : x > 0 ? 1 : -1); }
template <class TInt> bool in_range(TInt val, TInt min, TInt max) { return val >= min && val < max; }
template <> bool in_range<double>(double val, double min, double max) { return val - min > -EPS && val - max < EPS; }
template <> bool in_range<float>(float val, float min, float max) { return val - min > -EPS && val - max < EPS; }
template <class TInt> bool in_range2d(TInt x, TInt y, TInt w, TInt h) { return x >= 0 && x < w && y >= 0 && y < h; }
vector<int> iotavn(int start, int count) { vector<int> r(count); iota(allof(r), start);	return r; }


//// start up ////
void solve();
int main()
{
	//// for local debugging
	//freopen("input.txt", "r", stdin);
	//freopen("output.txt", "w", stdout);

	//auto classic_table = ctype<char>::classic_table();
	//vector<ctype<char>::mask> ctable(classic_table, classic_table + ctype<char>::table_size);
	//ctable[':'] |= ctype_base::space; // as delimitor
	//ctable[','] |= ctype_base::space; // as delimitor
	//cin.imbue(locale(cin.getloc(), new ctype<char>(ctable.data())));

	cin.tie(nullptr);
	ios_base::sync_with_stdio(false);
	cout << fixed;
	cout << setprecision(std::numeric_limits<double>::max_digits10);
	solve();

	return 0;
}

/// 座圧 座標圧縮
template <class T>
struct CoordinateCompression
{
	map<T, int> comp{};
	vector<T> decomp{};
	vector<T> init(const vector<T> &orig)
	{
		decomp = orig;
		decomp.push_back(numeric_limits<T>::min());
		decomp.push_back(numeric_limits<T>::max());
		sort(allof(decomp));
		decomp.erase(unique(allof(decomp)), decomp.end());
		REP(i, decomp.size()) { comp[decomp[i]] = i; }
		vector<T> ret(orig.size());
		REP(i, orig.size()) { ret[i] = comp[orig[i]]; }
		return ret;
	}
	size_t size() { return decomp.size(); }
	T operator[](int x) { return decomp[x]; }
};

template <class T>
struct CoordinateCompression2D
{
	CoordinateCompression<T> Xs, Ys;
	
	template <class P>
	vector<P> init(const vector<P> &orig)
	{
		size_t N = orig.size();
		vector<T> x(N); REP(i, N) { x[i] = orig[i].x; } x = Xs.init(x);
		vector<T> y(N); REP(i, N) { y[i] = orig[i].y; } y = Ys.init(y);
		vector<P> ret(N); REP(i, N) { ret[i] = { x[i], y[i] }; }
		return ret;
	}
	struct size2D { size_t x, y; };
	size2D size() { return { Xs.size(), Ys.size() }; }
	
	template <class P>
	P operator[](P p) { return { Xs[p.x], Ys[p.y] }; }
};

template <class T> struct Ruisekiwa2DT : vevector<T>
{
	using vevector<T>::at;
	Ruisekiwa2DT(const vector<vector<T>> &A) 
		: vevector<T>(static_cast<int>(A.size()) + 1, static_cast<int>(A[0].size()) + 1)
	{
		REP(x, A.size()) REP(y, A[0].size()) { at(x).at(y + 1) += at(x).at(y) + A[x][y]; }
		REP(y, A[0].size()) REP(x, A.size()) { at(x + 1).at(y) += at(x).at(y); }
	}
	T Range(int l, int r, int t, int b) const { return at(l).at(t) + at(r).at(b) - at(r).at(t) - at(l).at(b); }
}; template<class T> Ruisekiwa2DT<T> Ruisekiwa2D(vector<vector<T>>&A) {	return Ruisekiwa2DT<T>(A); }

////////////////////
/// template end ///
////////////////////


void solve()
{
	READ(int, N, B);
	struct P { llong x, y; };
	vector<P> ps;
	vector<int> ss;

	REP(i, N)
	{
		READ(llong, x, y, p);
		ps.push_back({ x, y });
		ss.push_back(p);
	}

	CoordinateCompression2D<llong> psx;
	ps = psx.init(ps);

	auto sz = psx.size();

	vevector<int> scr(sz.x, sz.y);
	vevector<int> cnt(sz.x, sz.y);

	REP(i, N)
	{
		scr[ps[i].x][ps[i].y] += ss[i];
		cnt[ps[i].x][ps[i].y] += 1;
	}

	auto scoreTable = Ruisekiwa2D(scr);
	auto countTable = Ruisekiwa2D(cnt);

	int ans = 0;
	REP(l, sz.x) FOR(r, l, sz.x)
	{
		int t = 0, b = 0;
		while (b < sz.y)
		{
			int sc = scoreTable.Range(l, r, t, b);
			int ct = countTable.Range(l, r, t, b);
			if (sc <= B)
			{
				ans = max(ans, ct);
			}

			if (b > t && sc > B)
			{
				t++;
			}
			else
			{
				b++;
			}
		}
	}

	WRITE(ans);
}
0