結果

問題 No.199 星を描こう
ユーザー tu-satu-sa
提出日時 2018-07-18 06:13:57
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 7,749 bytes
コンパイル時間 1,804 ms
コンパイル使用メモリ 180,096 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-05-06 18:33:10
合計ジャッジ時間 2,854 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 1 ms
6,940 KB
testcase_02 AC 1 ms
6,940 KB
testcase_03 AC 1 ms
6,944 KB
testcase_04 AC 1 ms
6,944 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 1 ms
6,940 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 1 ms
6,940 KB
testcase_11 AC 1 ms
6,944 KB
testcase_12 AC 2 ms
6,944 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 2 ms
6,944 KB
testcase_15 AC 1 ms
6,940 KB
testcase_16 AC 2 ms
6,944 KB
testcase_17 AC 1 ms
6,944 KB
testcase_18 AC 2 ms
6,940 KB
testcase_19 AC 2 ms
6,940 KB
testcase_20 AC 1 ms
6,944 KB
testcase_21 AC 1 ms
6,944 KB
testcase_22 AC 1 ms
6,944 KB
testcase_23 AC 2 ms
6,940 KB
testcase_24 AC 2 ms
6,940 KB
testcase_25 AC 2 ms
6,940 KB
testcase_26 AC 2 ms
6,944 KB
testcase_27 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

////////////////////////////////////////
///  tu3 pro-con template            ///
////////////////////////////////////////
#include "bits/stdc++.h"
using namespace std;

// -- loop macros -- //
#define REP(i,n) for (int i = 0; i < (n); i++)
#define RREP(i,n) for (int i = (n)-1; i >= 0; i--)
#define FOR(i,s,n) for (int i = (int)(s); i < (n); i++)
#define RFOR(i,s,n) for (int i = (n)-1; i >= (s); i--)
#define FOREACH(i,container) for (auto &&i : container)
#define allof(c) c.begin(), c.end()
#define partof(c,i,n) c.begin() + (i), c.begin() + (i) + (n)

// -- functors -- //
#define PREDICATE(t,a,exp) [&](const t & a) -> bool { return exp; }
#define COMPARISON(t,a,b,exp) [&](const t & a, const t & b) -> bool { return exp; }

#define PRED(a,exp) [&](const auto & a) -> bool { return exp; }
#define COMP(a,b,exp) [&](const auto & a, const auto & b) -> bool { return exp; }
#define CONV1(a,exp) [&](const auto & a) -> auto { return exp; }
#define CONV2(a,b,exp) [&](const auto & a, const auto & b) -> auto { return exp; }
#define CONV3(a,b,c,exp) [&](const auto & a, const auto & b, const auto & c) -> auto { return exp; }

// -- typedefs -- //
#define EPS 1e-9

typedef unsigned int uint;
typedef long long llong;
typedef unsigned long long ullong;

// -- I/O Helper -- //
struct _Reader { _Reader(istream &cin) :cin(cin) {} istream &cin; template <class T> _Reader operator ,(T &rhs) { cin >> rhs; return *this; } };
struct _Writer { _Writer(ostream &cout) :cout(cout) {} ostream &cout; bool f{ false }; template <class T> _Writer operator ,(const T &rhs) { cout << (f ? " " : "") << rhs; f = true; return *this; } };
#define READ(t,...) t __VA_ARGS__; (_Reader{cin}), __VA_ARGS__
#define WRITE(...) (_Writer{cout}), __VA_ARGS__; cout << '\n'
#define DEBUG(...) (_Writer{cerr}), __VA_ARGS__; cerr << '\n'

// -- vevector -- //
template <class T> struct vevector : public vector<vector<T>> { vevector(size_t n = 0, size_t m = 0, const T &initial = T()) : vector<vector<T>>(n, vector<T>(m, initial)) { } };
template <class T> struct vevevector : public vector<vevector<T>> { vevevector(size_t n = 0, size_t m = 0, size_t l = 0, const T &initial = T()) : vector<vevector<T>>(n, vevector<T>(m, l, initial)) { } };
template <class T> struct vevevevector : public vector<vevevector<T>> { vevevevector(size_t n = 0, size_t m = 0, size_t l = 0, size_t k = 0, const T &initial = T()) : vector<vevevector<T>>(n, vevevector<T>(m, l, k, initial)) { } };

namespace std {
	template <class T1, class T2> inline istream & operator >> (istream & in, pair<T1, T2> &p) { in >> p.first >> p.second; return in; }
	template <class T1, class T2> inline ostream & operator << (ostream &out, const pair<T1, T2> &p) { out << p.first << " " << p.second; return out; }
}

template <class T> T read() { T t; cin >> t; return t; }
template <class T> vector<T> read(int n) { vector<T> v; REP(i, n) { v.push_back(read<T>()); } return v; }
template <class T> vevector<T> read(int n, int m) { vevector<T> v; REP(i, n) v.push_back(read<T>(m)); return v; }
template <class T> vector<T> readjag() { return read<T>(read<int>()); }
template <class T> vevector<T> readjag(int n) { vevector<T> v; REP(i, n) v.push_back(readjag<T>()); return v; }

template <class T> struct iter_pair_t { T beg, end; };
template <class T> iter_pair_t<T> iter_pair(T beg, T end) { return iter_pair_t<T>{beg, end}; }
template <class T> ostream & operator << (ostream &out, iter_pair_t<T> v) { if (v.beg != v.end) { out << *v.beg++; while (v.beg != v.end) { out << " " << *v.beg++; } } return out; }
template <class T1> ostream & operator << (ostream &out, const vector<T1> &v) { return out << iter_pair(begin(v), end(v)); }

// -- etc -- //
template <class T> T infinity_value();
#define DEFINE_INFINITY_VALUE(T, val) template <> constexpr T infinity_value<T>() { return (val); }
DEFINE_INFINITY_VALUE(int, 1 << 28);
DEFINE_INFINITY_VALUE(uint, 1u << 28);
DEFINE_INFINITY_VALUE(llong, 1ll << 60);
DEFINE_INFINITY_VALUE(ullong, 1ull << 60);
DEFINE_INFINITY_VALUE(double, HUGE_VAL);
DEFINE_INFINITY_VALUE(float, HUGE_VAL);
#define INF(T) infinity_value<T>()

inline int sign_of(double x) { return (abs(x) < EPS ? 0 : x > 0 ? 1 : -1); }
template <class TInt> bool in_range(TInt val, TInt min, TInt max) { return val >= min && val < max; }
template <> bool in_range<double>(double val, double min, double max) { return val - min > -EPS && val - max < EPS; }
template <> bool in_range<float>(float val, float min, float max) { return val - min > -EPS && val - max < EPS; }
template <class TInt> bool in_range2d(TInt x, TInt y, TInt w, TInt h) { return x >= 0 && x < w && y >= 0 && y < h; }
vector<int> iotavn(int start, int count) { vector<int> r(count); iota(allof(r), start);	return r; }

//// start up ////
void solve();
int main()
{
	//// for local debugging
	//freopen("input.txt", "r", stdin);
	//freopen("output.txt", "w", stdout);

	//auto classic_table = ctype<char>::classic_table();
	//vector<ctype<char>::mask> ctable(classic_table, classic_table + ctype<char>::table_size);
	//ctable[':'] |= ctype_base::space; // as delimitor
	//ctable['/'] |= ctype_base::space; // as delimitor
	//cin.imbue(locale(cin.getloc(), new ctype<char>(ctable.data())));

	cin.tie(nullptr);
	ios_base::sync_with_stdio(false);
	cout << fixed;
	cout << setprecision(std::numeric_limits<double>::max_digits10);
	solve();

	return 0;
}

////////////////////
/// template end ///
////////////////////

// 平面上の点。もしくは平面上のベクトル。
struct P2
{
	double x, y;
	P2(double x = 0, double y = 0) : x(x), y(y) { }
	P2 operator +() const { return *this; }
	P2 operator +(const P2 &_) const { return { x + _.x, y + _.y }; }
	P2& operator +=(const P2 &_) { x += _.x, y += _.y; return *this; }
	P2 operator -() const { return { -x, -y }; }
	P2 operator -(const P2 &_) const { return *this + -_; }
	P2& operator -=(const P2 &_) { x -= _.x, y -= _.y; return *this; }
	P2 operator *(double _) const { return { x*_, y*_ }; }
	P2 operator /(double _) const { return { x / _, y / _ }; }
	double dot(const P2 &_) const { return x * _.x + y * _.y; } // 内積
	double cross(const P2 &_) const { return x * _.y - y * _.x; } // 外積
	double sqlength() const { return x * x + y * y; } // 二乗長さ
	double length() const { return sqrt(sqlength()); } // 長さ
	P2 orthogonal() const { return { -y, x }; }
	P2 direction() const { return *this / length(); } // 方向ベクトル
	double arg() const { return atan2(y, x); }
	static P2 polar(double length, double theta) { return P2(std::polar(length, theta).real(), std::polar(length, theta).imag()); }
};
inline istream & operator>>(istream & in, P2 & p) { in >> p.x >> p.y; return in; }
inline ostream & operator<<(ostream & out, const P2 & p) { out << p.x << ' ' << p.y; return out; }


/// 点集合の凸包 O(n log n)
typedef int Index;
vector<Index> convex_hull(const vector<P2> &points)
{
	int N = points.size();
	if (N == 0) { return {}; }
	if (N == 1) { return { 0 }; }
	if (N == 2) { return { 0,1 }; }

	vector<Index> pidx(N);
	REP(i, N) { pidx[i] = i; }

	auto cmpP2 = COMPARISON(P2, a, b, a.x != b.x ? a.x < b.x : a.y < b.y);
	sort(allof(pidx), COMPARISON(Index, a, b, cmpP2(points[a], points[b])));

	vector<Index> ret;
	ret.reserve(N * 2);

	auto cw = [](P2 a, P2 b, P2 c) { return (b - a).cross(c - a) > EPS; };
	auto f = [&](int K, int i)
	{
		while (ret.size() > K)
		{
			P2 a = points[ret[ret.size() - 2]];
			P2 b = points[ret[ret.size() - 1]];
			P2 c = points[pidx[i]];
			if (cw(a, b, c)) { break; }
			ret.pop_back();
		}
		ret.push_back(pidx[i]);
	};

	REP(i, N) { f(1, i); }
	int K = ret.size();
	RREP(i, N - 1) { f(K, i); }
	ret.pop_back();
	return ret;
}
void solve()
{
	WRITE(convex_hull(read<P2>(5)).size() == 5 ? "YES" : "NO");
}
0