結果

問題 No.194 フィボナッチ数列の理解(1)
ユーザー Yang33
提出日時 2018-08-01 00:49:44
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 15 ms / 5,000 ms
コード長 3,320 bytes
コンパイル時間 5,499 ms
コンパイル使用メモリ 177,272 KB
実行使用メモリ 11,076 KB
最終ジャッジ日時 2024-09-19 16:39:30
合計ジャッジ時間 3,196 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 37
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using VS = vector<string>; using LL = long long;
using VI = vector<int>; using VVI = vector<VI>;
using PII = pair<int, int>; using PLL = pair<LL, LL>;
using VL = vector<LL>; using VVL = vector<VL>;
#define ALL(a) begin((a)),end((a))
#define RALL(a) (a).rbegin(), (a).rend()
#define SZ(a) int((a).size())
#define SORT(c) sort(ALL((c)))
#define RSORT(c) sort(RALL((c)))
#define UNIQ(c) (c).erase(unique(ALL((c))), end((c)))
#define FOR(i, s, e) for (int(i) = (s); (i) < (e); (i)++)
#define FORR(i, s, e) for (int(i) = (s); (i) > (e); (i)--)
#define debug(x) cerr << #x << ": " << x << endl
const int INF = 1e9; const LL LINF = 1e16;
const LL MOD = 1000000007; const double PI = acos(-1.0);
int DX[8] = { 0, 0, 1, -1, 1, 1, -1, -1 }; int DY[8] = { 1, -1, 0, 0, 1, -1, 1, -1 };
/* ----- 2018/07/31 Problem: yukicoder 194 / Link: http://yukicoder.me/problems/no/194 ----- */
/* ------------
yukiyukicoder
yuki
NA1,A2,...,ANkF(k)N
F(k)
- k≤N F(k)=Ak
- k>N F(k)=F(k−1)+F(k−2)+...+F(k−N)=∑1≤i≤NF(k−i)
yukiKF(K)S(K)=∑1≤k≤KF(k)
F(K)S(K)10^9+7
---------- */
/* ----------
-------- */
template<typename T>
vector<vector<T>> mul(vector<vector<T>> &A, vector<vector<T>> &B) {
vector<vector<T>> C(A.size(), vector<T>(B[0].size()));
FOR(i, 0, (int)A.size()) {
FOR(k, 0, (int)B.size()) {
if (A[i][k]) {
FOR(j, 0, (int)B[0].size()) {
C[i][j] = (C[i][j] + (A[i][k]) * (B[k][j])) % MOD;
}
}
}
}
return C;
}
template<typename T>
vector<vector<T>> pow(vector<vector<T>> A, long long n) {
vector<vector<T>> B((int)A.size(), vector<T>((int)A.size()));
FOR(i, 0, (int)A.size()) {
B[i][i] = 1;
}
while (n > 0) {
if (n & 1) B = mul(B, A);
A = mul(A, A);
n >>= 1;
}
return B;
}
int main() {
cin.tie(0);
ios_base::sync_with_stdio(false);
LL N, K; cin >> N >> K;
VI a(N);
FOR(i, 0, N) {
cin >> a[i];
}
if (N <= 30) {
VVL A(N+1, VL(N+1, 0));
FOR(i, 0, N + 1)A[0][i] = 1;
FOR(i, 1, N + 1)A[1][i] = 1;
FOR(i, 2, N + 1)A[i][i - 1] = 1;
VVL AN = pow(A, K-N);
VVL Seed(N + 1, VL(1, 0));
LL sn1 = 2 * accumulate(ALL(a), 0LL) ;
Seed[0][0] = sn1;
FOR(i, 0, N)Seed[N-i][0] = a[i];
VVL res = mul(AN, Seed);
cout << res[1][0] << " " << (res[0][0]- accumulate(ALL(a), 0LL) +MOD)%MOD << endl;
}
else {
LL sum = 0;
VL Fib(K, 0);
FOR(i, 0, N) {
sum += a[i];
Fib[i] = a[i];
}
FOR(i, N, K) {
Fib[i] = sum;
sum = sum - Fib[i-N] + sum;
sum += MOD, sum %= MOD;
}
LL ret = 0;
FOR(i, 0, K) {
ret += Fib[i];
ret %= MOD;
}
cout << Fib[K - 1] << " " << ret << endl;
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0