結果
問題 | No.732 3PrimeCounting |
ユーザー | uwi |
提出日時 | 2018-09-07 21:43:59 |
言語 | Java21 (openjdk 21) |
結果 |
AC
|
実行時間 | 889 ms / 3,000 ms |
コード長 | 11,738 bytes |
コンパイル時間 | 4,429 ms |
コンパイル使用メモリ | 89,752 KB |
実行使用メモリ | 81,900 KB |
最終ジャッジ日時 | 2024-05-07 00:49:13 |
合計ジャッジ時間 | 29,640 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 52 ms
37,056 KB |
testcase_01 | AC | 52 ms
37,064 KB |
testcase_02 | AC | 51 ms
37,196 KB |
testcase_03 | AC | 53 ms
37,132 KB |
testcase_04 | AC | 51 ms
37,072 KB |
testcase_05 | AC | 51 ms
37,080 KB |
testcase_06 | AC | 52 ms
37,212 KB |
testcase_07 | AC | 54 ms
37,084 KB |
testcase_08 | AC | 51 ms
36,992 KB |
testcase_09 | AC | 53 ms
36,996 KB |
testcase_10 | AC | 53 ms
37,184 KB |
testcase_11 | AC | 52 ms
37,132 KB |
testcase_12 | AC | 53 ms
37,076 KB |
testcase_13 | AC | 51 ms
36,996 KB |
testcase_14 | AC | 52 ms
37,008 KB |
testcase_15 | AC | 53 ms
37,044 KB |
testcase_16 | AC | 51 ms
37,144 KB |
testcase_17 | AC | 52 ms
37,008 KB |
testcase_18 | AC | 53 ms
36,776 KB |
testcase_19 | AC | 52 ms
37,104 KB |
testcase_20 | AC | 96 ms
39,844 KB |
testcase_21 | AC | 151 ms
44,436 KB |
testcase_22 | AC | 150 ms
44,796 KB |
testcase_23 | AC | 69 ms
38,528 KB |
testcase_24 | AC | 69 ms
38,496 KB |
testcase_25 | AC | 185 ms
45,308 KB |
testcase_26 | AC | 145 ms
44,068 KB |
testcase_27 | AC | 98 ms
39,728 KB |
testcase_28 | AC | 97 ms
39,460 KB |
testcase_29 | AC | 120 ms
41,432 KB |
testcase_30 | AC | 126 ms
41,692 KB |
testcase_31 | AC | 151 ms
44,348 KB |
testcase_32 | AC | 156 ms
43,992 KB |
testcase_33 | AC | 149 ms
43,476 KB |
testcase_34 | AC | 141 ms
44,044 KB |
testcase_35 | AC | 139 ms
43,616 KB |
testcase_36 | AC | 140 ms
43,776 KB |
testcase_37 | AC | 74 ms
38,428 KB |
testcase_38 | AC | 75 ms
38,544 KB |
testcase_39 | AC | 145 ms
45,036 KB |
testcase_40 | AC | 135 ms
44,252 KB |
testcase_41 | AC | 145 ms
43,944 KB |
testcase_42 | AC | 149 ms
43,640 KB |
testcase_43 | AC | 151 ms
44,300 KB |
testcase_44 | AC | 144 ms
44,388 KB |
testcase_45 | AC | 117 ms
41,552 KB |
testcase_46 | AC | 115 ms
41,488 KB |
testcase_47 | AC | 114 ms
41,392 KB |
testcase_48 | AC | 189 ms
45,288 KB |
testcase_49 | AC | 200 ms
45,500 KB |
testcase_50 | AC | 144 ms
44,068 KB |
testcase_51 | AC | 142 ms
44,068 KB |
testcase_52 | AC | 94 ms
39,716 KB |
testcase_53 | AC | 252 ms
48,544 KB |
testcase_54 | AC | 497 ms
59,668 KB |
testcase_55 | AC | 523 ms
59,912 KB |
testcase_56 | AC | 494 ms
57,008 KB |
testcase_57 | AC | 321 ms
54,672 KB |
testcase_58 | AC | 358 ms
54,688 KB |
testcase_59 | AC | 263 ms
48,376 KB |
testcase_60 | AC | 350 ms
54,648 KB |
testcase_61 | AC | 327 ms
54,164 KB |
testcase_62 | AC | 548 ms
57,168 KB |
testcase_63 | AC | 503 ms
56,428 KB |
testcase_64 | AC | 350 ms
54,844 KB |
testcase_65 | AC | 353 ms
54,464 KB |
testcase_66 | AC | 77 ms
38,180 KB |
testcase_67 | AC | 68 ms
38,124 KB |
testcase_68 | AC | 471 ms
60,156 KB |
testcase_69 | AC | 513 ms
56,808 KB |
testcase_70 | AC | 504 ms
56,676 KB |
testcase_71 | AC | 499 ms
57,024 KB |
testcase_72 | AC | 503 ms
59,284 KB |
testcase_73 | AC | 878 ms
81,900 KB |
testcase_74 | AC | 866 ms
81,712 KB |
testcase_75 | AC | 191 ms
44,708 KB |
testcase_76 | AC | 518 ms
56,848 KB |
testcase_77 | AC | 329 ms
54,556 KB |
testcase_78 | AC | 839 ms
77,328 KB |
testcase_79 | AC | 515 ms
56,844 KB |
testcase_80 | AC | 829 ms
69,788 KB |
testcase_81 | AC | 505 ms
59,820 KB |
testcase_82 | AC | 100 ms
40,380 KB |
testcase_83 | AC | 342 ms
54,380 KB |
testcase_84 | AC | 356 ms
54,392 KB |
testcase_85 | AC | 511 ms
59,492 KB |
testcase_86 | AC | 889 ms
77,180 KB |
testcase_87 | AC | 869 ms
70,864 KB |
testcase_88 | AC | 824 ms
70,624 KB |
ソースコード
package contest180907; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; public class D { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(); int[] primes = sieveEratosthenes(3*n); long[] a = new long[n+1]; for(int p : primes)if(p <= n)a[p] = 1; long[] a2 = convolute(a, a); long[] a3 = convolute(a2, a); long[] am2 = new long[2*n+1]; for(int p : primes)if(p <= n)am2[2*p] = 1; long[] am3 = convolute(am2, a); long ret = 0; for(int p : primes) { ret += a3[p] - am3[p] * 3; } out.println(ret/6); } public static final int[] NTTPrimes = {1053818881, 1051721729, 1045430273, 1012924417, 1007681537, 1004535809, 998244353, 985661441, 976224257, 975175681}; public static final int[] NTTPrimitiveRoots = {7, 6, 3, 5, 3, 3, 3, 3, 3, 17}; // public static final int[] NTTPrimes = {1012924417, 1004535809, 998244353, 985661441, 975175681, 962592769, 950009857, 943718401, 935329793, 924844033}; // public static final int[] NTTPrimitiveRoots = {5, 3, 3, 3, 17, 7, 7, 7, 3, 5}; public static long[] convoluteSimply(long[] a, long[] b, int P, int g) { int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2); long[] fa = nttmb(a, m, false, P, g); long[] fb = a == b ? fa : nttmb(b, m, false, P, g); for(int i = 0;i < m;i++){ fa[i] = fa[i]*fb[i]%P; } return nttmb(fa, m, true, P, g); } public static long[] convolute(long[] a, long[] b) { int USE = 2; int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2); long[][] fs = new long[USE][]; for(int k = 0;k < USE;k++){ int P = NTTPrimes[k], g = NTTPrimitiveRoots[k]; long[] fa = nttmb(a, m, false, P, g); long[] fb = a == b ? fa : nttmb(b, m, false, P, g); for(int i = 0;i < m;i++){ fa[i] = fa[i]*fb[i]%P; } fs[k] = nttmb(fa, m, true, P, g); } int[] mods = Arrays.copyOf(NTTPrimes, USE); long[] gammas = garnerPrepare(mods); int[] buf = new int[USE]; for(int i = 0;i < fs[0].length;i++){ for(int j = 0;j < USE;j++)buf[j] = (int)fs[j][i]; long[] res = garnerBatch(buf, mods, gammas); long ret = 0; for(int j = res.length-1;j >= 0;j--)ret = ret * mods[j] + res[j]; fs[0][i] = ret; } return fs[0]; } public static long[] convolute(long[] a, long[] b, int USE, int mod) { int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2); long[][] fs = new long[USE][]; for(int k = 0;k < USE;k++){ int P = NTTPrimes[k], g = NTTPrimitiveRoots[k]; long[] fa = nttmb(a, m, false, P, g); long[] fb = a == b ? fa : nttmb(b, m, false, P, g); for(int i = 0;i < m;i++){ fa[i] = fa[i]*fb[i]%P; } fs[k] = nttmb(fa, m, true, P, g); } int[] mods = Arrays.copyOf(NTTPrimes, USE); long[] gammas = garnerPrepare(mods); int[] buf = new int[USE]; for(int i = 0;i < fs[0].length;i++){ for(int j = 0;j < USE;j++)buf[j] = (int)fs[j][i]; long[] res = garnerBatch(buf, mods, gammas); long ret = 0; for(int j = res.length-1;j >= 0;j--)ret = (ret * mods[j] + res[j]) % mod; fs[0][i] = ret; } return fs[0]; } // static int[] wws = new int[270000]; // outer faster // Modifed Montgomery + Barrett private static long[] nttmb(long[] src, int n, boolean inverse, int P, int g) { long[] dst = Arrays.copyOf(src, n); int h = Integer.numberOfTrailingZeros(n); long K = Integer.highestOneBit(P)<<1; int H = Long.numberOfTrailingZeros(K)*2; long M = K*K/P; int[] wws = new int[1<<h-1]; long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P); long w = (1L<<32)%P; for(int k = 0;k < 1<<h-1;k++){ wws[k] = (int)w; w = modh(w*dw, M, H, P); } long J = invl(P, 1L<<32); for(int i = 0;i < h;i++){ for(int j = 0;j < 1<<i;j++){ for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){ long u = (dst[s] - dst[t] + 2*P)*wws[k]; dst[s] += dst[t]; if(dst[s] >= 2*P)dst[s] -= 2*P; // long Q = (u&(1L<<32)-1)*J&(1L<<32)-1; long Q = (u<<32)*J>>>32; dst[t] = (u>>>32)-(Q*P>>>32)+P; } } if(i < h-1){ for(int k = 0;k < 1<<h-i-2;k++)wws[k] = wws[k*2]; } } for(int i = 0;i < n;i++){ if(dst[i] >= P)dst[i] -= P; } for(int i = 0;i < n;i++){ int rev = Integer.reverse(i)>>>-h; if(i < rev){ long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d; } } if(inverse){ long in = invl(n, P); for(int i = 0;i < n;i++)dst[i] = modh(dst[i]*in, M, H, P); } return dst; } // Modified Shoup + Barrett private static long[] nttsb(long[] src, int n, boolean inverse, int P, int g) { long[] dst = Arrays.copyOf(src, n); int h = Integer.numberOfTrailingZeros(n); long K = Integer.highestOneBit(P)<<1; int H = Long.numberOfTrailingZeros(K)*2; long M = K*K/P; long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P); long[] wws = new long[1<<h-1]; long[] ws = new long[1<<h-1]; long w = 1; for(int k = 0;k < 1<<h-1;k++){ wws[k] = (w<<32)/P; ws[k] = w; w = modh(w*dw, M, H, P); } for(int i = 0;i < h;i++){ for(int j = 0;j < 1<<i;j++){ for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){ long ndsts = dst[s] + dst[t]; if(ndsts >= 2*P)ndsts -= 2*P; long T = dst[s] - dst[t] + 2*P; long Q = wws[k]*T>>>32; dst[s] = ndsts; dst[t] = ws[k]*T-Q*P&(1L<<32)-1; } } // dw = dw * dw % P; if(i < h-1){ for(int k = 0;k < 1<<h-i-2;k++){ wws[k] = wws[k*2]; ws[k] = ws[k*2]; } } } for(int i = 0;i < n;i++){ if(dst[i] >= P)dst[i] -= P; } for(int i = 0;i < n;i++){ int rev = Integer.reverse(i)>>>-h; if(i < rev){ long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d; } } if(inverse){ long in = invl(n, P); for(int i = 0;i < n;i++){ dst[i] = modh(dst[i] * in, M, H, P); } } return dst; } static final long mask = (1L<<31)-1; public static long modh(long a, long M, int h, int mod) { long r = a-((M*(a&mask)>>>31)+M*(a>>>31)>>>h-31)*mod; return r < mod ? r : r-mod; } private static long[] garnerPrepare(int[] m) { int n = m.length; assert n == m.length; if(n == 0)return new long[0]; long[] gamma = new long[n]; for(int k = 1;k < n;k++){ long prod = 1; for(int i = 0;i < k;i++){ prod = prod * m[i] % m[k]; } gamma[k] = invl(prod, m[k]); } return gamma; } private static long[] garnerBatch(int[] u, int[] m, long[] gamma) { int n = u.length; assert n == m.length; long[] v = new long[n]; v[0] = u[0]; for(int k = 1;k < n;k++){ long temp = v[k-1]; for(int j = k-2;j >= 0;j--){ temp = (temp * m[j] + v[j]) % m[k]; } v[k] = (u[k] - temp) * gamma[k] % m[k]; if(v[k] < 0)v[k] += m[k]; } return v; } private static long pow(long a, long n, long mod) { // a %= mod; long ret = 1; int x = 63 - Long.numberOfLeadingZeros(n); for (; x >= 0; x--) { ret = ret * ret % mod; if (n << 63 - x < 0) ret = ret * a % mod; } return ret; } private static long invl(long a, long mod) { long b = mod; long p = 1, q = 0; while (b > 0) { long c = a / b; long d; d = a; a = b; b = d % b; d = p; p = q; q = d - c * q; } return p < 0 ? p + mod : p; } public static int[] sieveEratosthenes(int n) { if (n <= 32) { int[] primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 }; for (int i = 0; i < primes.length; i++) { if (n < primes[i]) { return Arrays.copyOf(primes, i); } } return primes; } int u = n + 32; double lu = Math.log(u); int[] ret = new int[(int) (u / lu + u / lu / lu * 1.5)]; ret[0] = 2; int pos = 1; int[] isnp = new int[(n + 1) / 32 / 2 + 1]; int sup = (n + 1) / 32 / 2 + 1; int[] tprimes = { 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 }; for (int tp : tprimes) { ret[pos++] = tp; int[] ptn = new int[tp]; for (int i = (tp - 3) / 2; i < tp << 5; i += tp) ptn[i >> 5] |= 1 << (i & 31); for (int j = 0; j < sup; j += tp) { for (int i = 0; i < tp && i + j < sup; i++) { isnp[j + i] |= ptn[i]; } } } // 3,5,7 // 2x+3=n int[] magic = { 0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13, 31, 22, 28, 18, 26, 10, 7, 12, 21, 17, 9, 6, 16, 5, 15, 14 }; int h = n / 2; for (int i = 0; i < sup; i++) { for (int j = ~isnp[i]; j != 0; j &= j - 1) { int pp = i << 5 | magic[(j & -j) * 0x076be629 >>> 27]; int p = 2 * pp + 3; if (p > n) break; ret[pos++] = p; if ((long) p * p > n) continue; for (int q = (p * p - 3) / 2; q <= h; q += p) isnp[q >> 5] |= 1 << q; } } return Arrays.copyOf(ret, pos); } void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms"); // Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){ // @Override // public void run() { // long s = System.currentTimeMillis(); // solve(); // out.flush(); // if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms"); // } // }; // t.start(); // t.join(); } public static void main(String[] args) throws Exception { new D().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private long[] nal(int n) { long[] a = new long[n]; for(int i = 0;i < n;i++)a[i] = nl(); return a; } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[][] nmi(int n, int m) { int[][] map = new int[n][]; for(int i = 0;i < n;i++)map[i] = na(m); return map; } private int ni() { return (int)nl(); } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); } }