結果
| 問題 | No.199 星を描こう |
| コンテスト | |
| ユーザー |
kei
|
| 提出日時 | 2018-09-18 23:08:55 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 9,142 bytes |
| コンパイル時間 | 2,160 ms |
| コンパイル使用メモリ | 187,016 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-07-18 08:08:58 |
| 合計ジャッジ時間 | 3,111 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 25 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
const int INF = 1e9;
const ll LINF = 1e18;
template<class S,class T> ostream& operator << (ostream& out,const pair<S,T>& o){ out << "(" << o.first << "," << o.second << ")"; return out; }
template<class T> ostream& operator << (ostream& out,const vector<T> V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << " ";} return out; }
template<class T> ostream& operator << (ostream& out,const vector<vector<T> > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; }
template<class S,class T> ostream& operator << (ostream& out,const map<S,T> mp){ out << "{ "; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << ":" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << ", "; } out << " }"; return out; }
/*
<url:>
問題文============================================================
=================================================================
解説=============================================================
================================================================
*/
typedef long double ld;
typedef complex<ld> Point;
const ld eps = 1e-9, pi = acos(-1.0);
namespace std {
bool operator<(const Point &lhs, const Point &rhs) {
if (lhs.real() < rhs.real() - eps) return true;
if (lhs.real() > rhs.real() + eps) return false;
return lhs.imag() < rhs.imag();
}
}
Point input_point() {ld x, y; cin >> x >> y; return Point(x, y);} // 点の入力
bool eq(ld a, ld b) {return (abs(a - b) < eps);} // 誤差つき等号判定
ld dot(Point a, Point b) {return real(conj(a) * b);} // 内積
ld cross(Point a, Point b) {return imag(conj(a) * b);} // 外積
// 直線の定義
class Line {
public:
Point a, b;
Line() : a(Point(0, 0)), b(Point(0, 0)) {}
Line(Point a, Point b) : a(a), b(b) {}
Point operator[](const int _num) {
if (_num == 0)return a;
else if (_num == 1)return b;
else assert(false);
}
};
// 円の定義
class Circle {
public:
Point p;
ld r;
Circle() : p(Point(0, 0)), r(0) {}
Circle(Point p, ld r) : p(p), r(r) {}
};
// 垂線の足
Point proj(Line l, Point p) {
ld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + t * (l.a - l.b);
}
// CCW
int ccw(Point a, Point b, Point c) {
b -= a; c -= a;
if (cross(b, c) > eps) return 1; // a,b,cが反時計周りの順に並ぶ
if (cross(b, c) < -eps) return -1; // a,b,cが時計周りの順に並ぶ
if (dot(b, c) < 0) return 2; // c,a,bの順に直線に並ぶ
if (norm(b) < norm(c)) return -2; // a,b,cの順に直線に並ぶ
return 0; // a,c,bの順に直線に並ぶ
}
/* 交差判定 */
// 直線と直線の交差判定
bool isis_ll(Line l, Line m) {return !eq(cross(l.b - l.a, m.b - m.a), 0);}
// 直線と線分の交差判定
bool isis_ls(Line l, Line s) {
return isis_ll(l, s) &&
(cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps);
}
// 線分と線分の交差判定
bool isis_ss(Line s, Line t) {
return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&
ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;
}
// 点の直線上判定
bool isis_lp(Line l, Point p) {return (abs(cross(l.b - p, l.a - p)) < eps);}
// 点の線分上判定
bool isis_sp(Line s, Point p) {return (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps);}
/* 距離 */
// 直線と直線の交点
Point is_ll(Line s, Line t) {
Point sv = s.b - s.a, tv = t.b - t.a;
assert(cross(sv, tv) != 0);
return s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv);
}
// 直線と点の距離
ld dist_lp(Line l, Point p) {
return abs(p - proj(l, p));
}
// 直線と直線の距離
ld dist_ll(Line l, Line m) {
return isis_ll(l, m) ? 0 : dist_lp(l, m.a);
}
// 直線と線分の距離
ld dist_ls(Line l, Line s) {
return isis_ls(l, s) ? 0 : min(dist_lp(l, s.a), dist_lp(l, s.b));
}
// 線分と点の距離
ld dist_sp(Line s, Point p) {
Point r = proj(s, p);
return isis_sp(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));
}
// 線分と線分の距離
ld dist_ss(Line s, Line t) {
if (isis_ss(s, t)) return 0;
return min({ dist_sp(s, t.a), dist_sp(s, t.b), dist_sp(t, s.a), dist_sp(t, s.b) });
}
/* 多角形 */
typedef vector<Point> Polygon;
// 面積
ld area(const Polygon &p) {
ld res = 0;
int n = (int)p.size();
for (int j = 0;j < n;j++) res += cross(p[j], p[(j + 1) % n]);
return res / 2;
}
// 多角形の回転方向
bool is_counter_clockwise(const Polygon &poly) {
ld angle = 0;
int n = (int)poly.size();
for (int i = 0;i < n;i++) {
Point a = poly[i], b = poly[(i + 1) % n], c = poly[(i + 2) % n];
angle += arg((c - b) / (b - a));
}
return angle > eps;
}
// 凸性判定
bool isConvex(const Polygon &poly){
int n = (int)poly.size();
if(n < 3) return false;
int s = -3;
for(int i = 0; i < n;i++){
int r = ccw(poly[(i+n-1)%n],poly[i%n],poly[(i+1)%n]);
if(r == 1 && s == -3) s = r;
if(s*r == -1) return false;
}
return true;
}
// 点の内外判定
// 0 => out : 1 => on : 2 => in
int is_in_polygon(const Polygon &poly, Point p) {
ld angle = 0;
int n = (int)poly.size();
for (int i = 0;i < n;i++) {
Point a = poly[i], b = poly[(i + 1) % n];
if (isis_sp(Line(a, b), p)) return 1;
angle += arg((b - p) / (a - p));
}
return eq(angle, 0) ? 0 : 2;
}
// 凸包 : 凸多角形のある一辺上にある点を含まない
Polygon convex_hull(vector<Point> ps) {
int n = (int)ps.size();
int k = 0;
sort(ps.begin(), ps.end());
Polygon ch(2 * n);
for (int i = 0; i < n; ch[k++] = ps[i++])
while (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;
for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--])
while (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;
ch.resize(k - 1);
return ch;
}
// 凸包 : 凸多角形のある一辺上にある点も含む
Polygon convex_hull2(vector<Point> ps) {
int n = (int)ps.size();
if (n < 3) return ps;
sort(ps.begin(), ps.end());
Polygon u = { ps[0], ps[1] }, l = { ps[n - 1],ps[n - 2] };
for (int i = 2; i < n; i++) {
for (int j = (int)u.size(); j >= 2 && ccw(u[j - 2], u[j - 1], ps[i]) >= 0;j--)u.pop_back();
u.push_back(ps[i]);
}
for (int i = n - 3;i >= 0;i--) {
for (int j = (int)l.size(); j >= 2 && ccw(l[j - 2], l[j - 1], ps[i]) >= 0;j--)l.pop_back();
l.push_back(ps[i]);
}
reverse(l.begin(), l.end());
for (int i = (int)u.size() - 2; i >= 1; i--)l.push_back(u[i]);
return l;
}
// 凸多角形の直径
pair<pll,ld> convex_diameter(const Polygon& poly){
int n = (int)poly.size();
if(n == 2) return make_pair(pll(0,1),abs(poly[0]-poly[1]));
int ii = 0, jj = 0;
for(int i = 1;i < n;i++){
if(poly[i].imag() > poly[ii].imag())ii = i;
if(poly[i].imag() < poly[jj].imag())jj = i;
}
pll resp = make_pair(-1,-1);
ld resd = 0;
int i, maxi,j,maxj;
i = maxi = ii; j = maxj = jj;
while(i != maxj || j != maxi){
ld cur = abs(poly[i] - poly[j]);
if(resd + eps < cur){ resd = cur; resp = pll(i,j); }
int di = (i+1)%n, dj = (j+1)%n;
if(cross(poly[di]-poly[i],poly[dj]-poly[j]) < 0) i = di;
else j = dj;
}
return make_pair(resp,resd);
}
// 凸カット
Polygon convex_cut(const Polygon &ps, Line l) {
int n = (int)ps.size();
Polygon Q;
for (int i = 0;i < n;i++) {
Point A = ps[i], B = ps[(i + 1) % n];
Line m = Line(A, B);
if (ccw(l.a, l.b, A) != -1) Q.push_back(A);
if (ccw(l.a, l.b, A) * ccw(l.a, l.b, B) < 0 && isis_ll(l, m))
Q.push_back(is_ll(l, m));
}
return Q;
}
// 円と多角形の共通部分
double area_of_polygon_and_circle(const Polygon& poly, const Circle c) {
int n = (int)poly.size();
ld r = 0;
for (int i = n - 1, j = 0; j < n; i=j++) {
Point v = abs(poly[j] - poly[i]) / (poly[j] - poly[i]);
if (poly[j] == poly[i])continue;
assert(poly[j] != poly[i]);
Point a = (poly[i] - c.p)*v, b = (poly[j] - c.p)*v;
ld d = norm(c.r) - norm(a.imag());
if (abs(a.imag()) < eps) continue;
if (d < 0)d = 0;
d = sqrt(d);
double l, m;
r += norm(c.r)*((l = atan2(b.imag(), min(b.real(), -d)) - atan2(a.imag(), min(a.real(), -d)))
+ (m = atan2(b.imag(), max(b.real(), d)) - atan2(a.imag(), max(a.real(), d))))
+ a.imag()*(min(d, max(a.real(), -d)) - max(-d, min(b.real(), d)));
assert(-pi < l && -pi < m && l < pi && m < pi);
}
return r / 2;
}
string solve(){
Polygon ps(5);
for(auto &in:ps) in = input_point();
auto ch = convex_hull(ps);
if(ch.size()!=5) return "NO";
return "YES";
}
int main(void) {
cin.tie(0); ios_base::sync_with_stdio(false);
cout << solve() << endl;
return 0;
}
kei