結果
| 問題 |
No.743 Segments on a Polygon
|
| コンテスト | |
| ユーザー |
くれちー
|
| 提出日時 | 2018-10-05 22:40:40 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 15,457 bytes |
| コンパイル時間 | 12,964 ms |
| コンパイル使用メモリ | 388,804 KB |
| 最終ジャッジ日時 | 2024-11-14 20:39:10 |
| 合計ジャッジ時間 | 13,685 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
error: expected one of `!`, `(`, `...`, `..=`, `..`, `::`, `:`, `{`, or `|`, found `)`
--> src/main.rs:215:36
|
215 | fn invert(&Self::Underlying) -> Self::Underlying;
| ^ expected one of 9 possible tokens
|
= note: anonymous parameters are removed in the 2018 edition (see RFC 1685)
help: explicitly ignore the parameter name
|
215 | fn invert(_: &Self::Underlying) -> Self::Underlying;
| ~~~~~~~~~~~~~~~~~~~~
error: `$op_rhs:pat` is followed by `|`, which is not allowed for `pat` fragments
--> src/main.rs:2:45
|
2 | ($T:ty, $U:ty, | $op_lhs:pat, $op_rhs:pat | $op_ret:expr) => {
| ----------- ^ not allowed after `pat` fragments
| |
| help: try a `pat_param` fragment specifier instead: `$op_rhs:pat_param`
|
= note: allowed there are: `=>`, `,`, `=`, `if` or `in`
error: `$inv_x:pat` is followed by `|`, which is not allowed for `pat` fragments
--> src/main.rs:24:24
|
24 | ($T:ty, | $inv_x:pat | $inv_b:expr) => {
| ---------- ^ not allowed after `pat` fragments
| |
| help: try a `pat_param` fragment specifier instead: `$inv_x:pat_param`
|
= note: allowed there are: `=>`, `,`, `=`, `if` or `in`
error: `$op_r:pat` is followed by `|`, which is not allowed for `pat` fragments
--> src/main.rs:270:47
|
270 | ($t:ty, $u:ty, | $op_l:pat, $op_r:pat | $op_b:expr, $id:expr) => {
| --------- ^ not allowed after `pat` fragments
| |
| help: try a `pat_param` fragment specifier instead: `$op_r:pat_param`
|
= note: allowed there are: `=>`, `,`, `=`, `if` or `in`
error: `$op_r:pat` is followed by `|`, which is not allowed for `pat` fragments
--> src/main.rs:287:47
|
287 |
ソースコード
macro_rules! impl_magma {
($T:ty, $U:ty, | $op_lhs:pat, $op_rhs:pat | $op_ret:expr) => {
impl $crate::math::algebra::Magma for $T {
type Underlying = $U;
fn op($op_lhs: &Self::Underlying, $op_rhs: &Self::Underlying) -> Self::Underlying {
$op_ret
}
}
};
}
macro_rules! impl_identity {
($T:ty, $id:expr) => {
impl $crate::math::algebra::Identity for $T {
fn identity() -> Self::Underlying {
$id
}
}
};
}
macro_rules! impl_invertible {
($T:ty, | $inv_x:pat | $inv_b:expr) => {
impl $crate::math::algebra::Invertible for $T {
fn invert($inv_x: &Self::Underlying) -> Self::Underlying {
$inv_b
}
}
};
}
macro_rules! impl_associative {
($T:ty) => {
impl $crate::math::algebra::Associative for $T {}
};
}
macro_rules! impl_commutative {
($T:ty) => {
impl $crate::math::algebra::Commutative for $T {}
};
}
fn solve<R: BufRead, W: Write>(_reader: R, _writer: &mut W) {
let mut _scanner = Scanner::new(_reader);
#[allow(unused_macros)]
macro_rules! scan {
($T:ty) => {
_scanner.next::<$T>().unwrap()
};
($($T:ty),+) => {
($(scan!($T)),+)
};
($($T:ty),+; $n:expr $(; $m:expr)*) => {{
let mut vec = Vec::with_capacity($n);
for _ in 0..$n {
vec.push(scan!($($T),+ $(; $m)*));
}
vec
}};
}
#[allow(unused_macros)]
macro_rules! scan_iter {
($T:ty; $n:expr) => {
_scanner.take::<$T>($n).map(|x| x.unwrap())
};
}
#[allow(unused_macros)]
macro_rules! print {
($fmt:expr) => {
write!(_writer, $fmt).unwrap()
};
($fmt:expr, $($arg:tt)*) => {
write!(_writer, $fmt, $($arg)*).unwrap()
};
}
#[allow(unused_macros)]
macro_rules! println {
($fmt:expr) => {
writeln!(_writer, $fmt).unwrap()
};
($fmt:expr, $($arg:tt)*) => {
writeln!(_writer, $fmt, $($arg)*).unwrap()
};
}
#[allow(unused_macros)]
macro_rules! eprint {
($fmt:expr) => {
#[cfg(debug_assertions)]
write!(::std::io::stderr(), $fmt).unwrap()
};
($fmt:expr, $($arg:tt)*) => {
#[cfg(debug_assertions)]
write!(::std::io::stderr(), $fmt, $($arg)*).unwrap()
};
}
#[allow(unused_macros)]
macro_rules! eprintln {
($fmt:expr) => {
#[cfg(debug_assertions)]
writeln!(::std::io::stderr(), $fmt).unwrap()
};
($fmt:expr, $($arg:tt)*) => {
#[cfg(debug_assertions)]
writeln!(::std::io::stderr(), $fmt, $($arg)*).unwrap()
};
}
#[allow(unused_macros)]
macro_rules! dump {
($($x:expr),+) => {
eprint!("[{}:{}] ", file!(), line!());
eprintln!(concat!($(stringify!($x), " = {:?}; "),+), $($x),+);
};
}
use data_structures::fenwick_tree::FenwickTree;
use math::algebra::AdditiveGroup;
let (n, m) = scan!(usize, usize);
let mut ab = vec![];
for _ in 0..n {
let (a, b) = scan!(usize, usize);
ab.push(if a < b { (a, b) } else { (b, a) });
}
ab.sort();
let mut seq = FenwickTree::<AdditiveGroup<isize>>::new(m + 1);
let mut ans = 0;
for (a, b) in ab {
ans += (seq.concat(0..a + 1) - seq.concat(0..b + 1)).abs();
seq.append(a, &1);
seq.append(b + 1, &-1);
}
println!("{}", ans);
}
const CUSTOM_STACK_SIZE_MEBIBYTES: Option<usize> = None;
fn main() {
if let Some(stack_size_mebibytes) = CUSTOM_STACK_SIZE_MEBIBYTES {
let builder = thread::Builder::new()
.name("exec_solver".to_string())
.stack_size(stack_size_mebibytes * 1024 * 1024);
builder.spawn(exec_solver).unwrap().join().unwrap();
} else {
exec_solver();
}
}
fn exec_solver() {
let stdin = stdin();
let stdout = stdout();
#[cfg(debug_assertions)]
let mut writer = stdout.lock();
#[cfg(not(debug_assertions))]
let mut writer = ::std::io::BufWriter::new(stdout.lock());
solve(stdin.lock(), &mut writer);
writer.flush().unwrap();
}
use io::Scanner;
use std::io::{stdin, stdout, BufRead, Write};
use std::thread;
pub mod math {
pub mod algebra {
pub use self::abelian_group::*;
pub use self::additive_group::*;
pub use self::associative::*;
pub use self::commutative::*;
pub use self::identity::*;
pub use self::invertible::*;
pub use self::magma::*;
pub use self::monoid::*;
mod magma {
pub trait Magma {
type Underlying: Clone;
fn op(lhs: &Self::Underlying, rhs: &Self::Underlying) -> Self::Underlying;
fn op_assign(lhs: &mut Self::Underlying, rhs: &Self::Underlying) {
*lhs = Self::op(lhs, rhs);
}
}
}
mod identity {
use math::algebra::Magma;
pub trait Identity: Magma {
fn identity() -> Self::Underlying;
fn prop(a: &Self::Underlying) -> bool
where
Self::Underlying: PartialEq,
{
Self::op(&Self::identity(), a) == *a && Self::op(a, &Self::identity()) == *a
}
}
}
mod invertible {
use math::algebra::{Identity, Magma};
pub trait Invertible: Magma + Identity {
fn invert(&Self::Underlying) -> Self::Underlying;
fn op_inverse(lhs: &Self::Underlying, rhs: &Self::Underlying) -> Self::Underlying {
Self::op(lhs, &Self::invert(rhs))
}
fn op_inverse_assign(lhs: &mut Self::Underlying, rhs: &Self::Underlying) {
*lhs = Self::op_inverse(lhs, rhs);
}
fn prop(a: &Self::Underlying) -> bool
where
Self::Underlying: Eq,
{
let identity = Self::identity();
Self::op(a, &Self::invert(a)) == identity && Self::op(&Self::invert(a), a) == identity
}
}
}
mod associative {
use math::algebra::Magma;
pub trait Associative: Magma {
fn prop(a: &Self::Underlying, b: &Self::Underlying, c: &Self::Underlying) -> bool
where
Self::Underlying: Eq,
{
Self::op(&Self::op(a, b), c) == Self::op(a, &Self::op(b, c))
}
}
}
mod commutative {
use math::algebra::Magma;
pub trait Commutative: Magma {
fn prop(a: &Self::Underlying, b: &Self::Underlying) -> bool
where
Self::Underlying: Eq,
{
Self::op(a, b) == Self::op(b, a)
}
}
}
#[macro_use]
mod monoid {
use math::algebra::{Associative, Identity, Magma};
pub trait Monoid: Magma + Associative + Identity {}
impl<T: Magma + Associative + Identity> Monoid for T {}
macro_rules! impl_monoid {
($t:ty, $u:ty, | $op_l:pat, $op_r:pat | $op_b:expr, $id:expr) => {
impl_magma! { $t, $u, | $op_l, $op_r | $op_b }
impl_associative! { $t }
impl_identity! { $t, $id }
};
}
}
#[macro_use]
mod abelian_group {
use math::algebra::{Associative, Commutative, Identity, Invertible, Magma};
pub trait AbelianGroup: Magma + Associative + Commutative + Identity + Invertible {}
impl<T: Magma + Associative + Commutative + Identity + Invertible> AbelianGroup for T {}
macro_rules! impl_abelian_group {
($t:ty, $u:ty, | $op_l:pat, $op_r:pat | $op_b:expr, $id:expr, | $inv_x:pat | $inv_b:expr) => {
impl_magma! { $t, $u, | $op_l, $op_r | $op_b }
impl_associative! { $t }
impl_commutative! { $t }
impl_identity! { $t, $id }
impl_invertible! { $t, | $inv_x | $inv_b }
};
}
}
mod additive_group {
#[allow(unused_imports)]
use math::algebra::AbelianGroup;
use std::marker::PhantomData;
pub struct AdditiveGroup<T> {
_marker: PhantomData<fn() -> T>,
}
macro_rules! impl_additive_group {
($($t:ty)+) => {$(
impl_abelian_group! { AdditiveGroup<$t>, $t, |&lhs, &rhs| lhs + rhs, 0, |&x| -x }
)+};
}
impl_additive_group! { i32 i64 isize }
}
}
}
pub mod misc {
pub use self::byte_char::*;
pub use self::byte_string::*;
mod byte_char {
use std::fmt::{self, Debug, Display, Formatter};
#[derive(Clone, Copy, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct ByteChar(pub u8);
impl Debug for ByteChar {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "b\'{}\'", self.0 as char)
}
}
impl Display for ByteChar {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}", self.0 as char)
}
}
}
mod byte_string {
use misc::ByteChar;
use std::fmt::{self, Debug, Display, Formatter};
#[derive(Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct ByteString(pub Vec<ByteChar>);
impl Debug for ByteString {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "b\"")?;
for &c in &self.0 {
write!(f, "{}", c.0 as char)?;
}
write!(f, "b\"")
}
}
impl Display for ByteString {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
for &c in &self.0 {
write!(f, "{}", c)?;
}
Ok(())
}
}
}
}
pub mod data_structures {
pub mod fenwick_tree {
pub use self::fenwick_tree::FenwickTree;
pub mod fenwick_tree {
use math::algebra::{AbelianGroup, Commutative, Monoid};
use std::iter;
use std::iter::FromIterator;
use std::ops::{Range, RangeTo};
pub struct FenwickTree<M: Monoid + Commutative> {
vec: Vec<M::Underlying>,
}
impl<M: Monoid + Commutative> Clone for FenwickTree<M> {
fn clone(&self) -> Self {
FenwickTree { vec: self.vec.clone() }
}
}
impl<M: Monoid + Commutative> FenwickTree<M> {
pub fn new(len: usize) -> Self {
FenwickTree {
vec: vec![M::identity(); len + 1],
}
}
pub fn len(&self) -> usize {
self.vec.len() - 1
}
pub fn append(&mut self, index: usize, x: &M::Underlying) {
assert!(index < self.len());
let mut i = index as isize + 1;
while i <= self.len() as isize {
M::op_assign(&mut self.vec[i as usize], x);
i += lsb(i);
}
}
pub fn prefix_concat(&self, index: RangeTo<usize>) -> M::Underlying {
assert!(index.end <= self.len());
let mut acc = M::identity();
let mut r = index.end as isize;
while r > 0 {
M::op_assign(&mut acc, &self.vec[r as usize]);
r -= lsb(r);
}
acc
}
}
impl<G: AbelianGroup> FenwickTree<G> {
pub fn get(&self, index: usize) -> G::Underlying {
debug_assert!(index < self.len());
self.concat(index..index + 1)
}
pub fn set(&mut self, index: usize, value: &G::Underlying) {
debug_assert!(index < self.len());
let diff = G::op_inverse(value, &self.get(index));
self.append(index, &diff);
}
pub fn concat(&self, index: Range<usize>) -> G::Underlying {
assert!(index.start <= index.end);
assert!(index.end <= self.len());
let mut acc = G::identity();
let mut l = index.start as isize;
let mut r = index.end as isize;
while l < r {
G::op_assign(&mut acc, &self.vec[r as usize]);
r -= lsb(r);
}
while r < l {
G::op_inverse_assign(&mut acc, &self.vec[l as usize]);
l -= lsb(l);
}
acc
}
}
impl<M: Monoid + Commutative> FromIterator<M::Underlying> for FenwickTree<M> {
fn from_iter<I: IntoIterator<Item = M::Underlying>>(iter: I) -> Self {
let mut vec = iter::once(M::identity()).chain(iter).collect::<Vec<_>>();
vec.shrink_to_fit();
for i in 1..(vec.len() - 1) as isize {
let j = (i + lsb(i)) as usize;
if j < vec.len() {
vec[j] = M::op(&vec[j], &vec[i as usize]);
}
}
FenwickTree { vec: vec }
}
}
fn lsb(x: isize) -> isize {
x & !x + 1
}
}
}
}
pub mod io {
pub use self::from_bytes::FromBytes;
pub use self::scanner::Scanner;
mod from_bytes {
use misc::{ByteChar, ByteString};
use std::str::{self, FromStr};
#[derive(Debug)]
pub struct FromBytesError;
pub trait FromBytes: Sized {
type Err;
fn from_bytes(bytes: &[u8]) -> Result<Self, Self::Err>;
}
impl FromBytes for ByteChar {
type Err = FromBytesError;
fn from_bytes(bytes: &[u8]) -> Result<Self, Self::Err> {
if bytes.len() == 1 {
Ok(ByteChar(*unsafe { bytes.get_unchecked(0) }))
} else {
Err(FromBytesError)
}
}
}
impl FromBytes for ByteString {
type Err = FromBytesError;
fn from_bytes(bytes: &[u8]) -> Result<Self, Self::Err> {
Ok(ByteString(bytes.iter().cloned().map(ByteChar).collect()))
}
}
impl<T: FromStr> FromBytes for T {
type Err = T::Err;
fn from_bytes(bytes: &[u8]) -> Result<Self, Self::Err> {
let s = if cfg!(debug_assertions) {
str::from_utf8(bytes).unwrap()
} else {
unsafe { str::from_utf8_unchecked(bytes) }
};
T::from_str(s)
}
}
}
mod scanner {
use io::FromBytes;
use std::io::BufRead;
use std::marker::PhantomData;
pub struct Scanner<R> {
reader: R,
buffer: Vec<u8>,
position: usize,
}
impl<R: BufRead> Scanner<R> {
pub fn new(reader: R) -> Self {
Scanner {
reader: reader,
buffer: vec![],
position: 0,
}
}
pub fn next<T: FromBytes>(&mut self) -> Result<T, T::Err> {
FromBytes::from_bytes(self.next_bytes().unwrap_or(&[]))
}
pub fn take<T: FromBytes>(&mut self, n: usize) -> Take<R, T> {
Take {
scanner: self,
n: n,
_marker: PhantomData,
}
}
pub fn next_bytes(&mut self) -> Option<&[u8]> {
if self.buffer.is_empty() {
self.read_line();
}
loop {
match self.buffer.get(self.position) {
Some(&b' ') => self.position += 1,
Some(&b'\n') => self.read_line(),
Some(_) => break,
None => return None,
}
}
let start = self.position;
loop {
match self.buffer.get(self.position) {
Some(&b' ') | Some(&b'\n') | None => break,
Some(_) => self.position += 1,
}
}
Some(&self.buffer[start..self.position])
}
fn read_line(&mut self) {
self.position = 0;
self.buffer.clear();
self.reader.read_until(b'\n', &mut self.buffer).unwrap();
}
}
pub struct Take<'a, R: 'a, T> {
scanner: &'a mut Scanner<R>,
n: usize,
_marker: PhantomData<fn() -> T>,
}
impl<'a, R: BufRead, T: FromBytes> Iterator for Take<'a, R, T> {
type Item = Result<T, T::Err>;
fn next(&mut self) -> Option<Self::Item> {
if self.n > 0 {
self.n -= 1;
Some(self.scanner.next())
} else {
None
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.n, Some(self.n))
}
}
impl<'a, R: BufRead, T: FromBytes> ExactSizeIterator for Take<'a, R, T> {}
}
}
くれちー