結果

問題 No.325 マンハッタン距離2
ユーザー keikei
提出日時 2018-10-12 01:13:40
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 13,831 bytes
コンパイル時間 2,059 ms
コンパイル使用メモリ 196,900 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-12 17:42:41
合計ジャッジ時間 2,746 ms
ジャッジサーバーID
(参考情報)
judge / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 1 ms
5,248 KB
testcase_05 AC 1 ms
5,248 KB
testcase_06 AC 1 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 1 ms
5,248 KB
testcase_09 AC 2 ms
6,816 KB
testcase_10 AC 2 ms
6,816 KB
testcase_11 AC 2 ms
6,816 KB
testcase_12 AC 2 ms
6,816 KB
testcase_13 AC 1 ms
6,816 KB
testcase_14 AC 2 ms
6,820 KB
testcase_15 AC 1 ms
6,816 KB
testcase_16 AC 2 ms
6,816 KB
testcase_17 AC 2 ms
6,816 KB
testcase_18 AC 2 ms
6,820 KB
testcase_19 AC 1 ms
6,816 KB
testcase_20 AC 1 ms
6,816 KB
testcase_21 AC 2 ms
6,816 KB
testcase_22 AC 2 ms
6,820 KB
testcase_23 AC 2 ms
6,820 KB
testcase_24 AC 2 ms
6,816 KB
testcase_25 AC 1 ms
6,816 KB
testcase_26 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
const int INF = 1e9;
const ll LINF = 1e18;
template<class S,class T> ostream& operator << (ostream& out,const pair<S,T>& o){ out << "(" << o.first << "," << o.second << ")"; return out; }
template<class T> ostream& operator << (ostream& out,const vector<T> V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << " ";} return out; }
template<class T> ostream& operator << (ostream& out,const vector<vector<T> > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; }
template<class S,class T> ostream& operator << (ostream& out,const map<S,T> mp){ out << "{ "; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << ":" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << ", "; } out << " }"; return out; }

/*
 <url:https://yukicoder.me/problems/no/325>
 問題文============================================================
 =================================================================
 解説=============================================================
 ================================================================
 */

typedef long double ld;
typedef complex<ld> Point;
const ld eps = 1e-9, pi = acos(-1.0);
namespace std {
    bool operator<(const Point &lhs, const Point &rhs) {
        if (lhs.real() < rhs.real() - eps) return true;
        if (lhs.real() > rhs.real() + eps) return false;
        return lhs.imag() < rhs.imag();
    }
}
Point input_point() { ld x, y; cin >> x >> y; return Point(x, y); } // 点の入力
bool eq(ld a, ld b) { return (abs(a - b) < eps); } // 誤差つき等号判定
ld dot(Point a, Point b) { return real(conj(a) * b); } // 内積
ld cross(Point a, Point b) { return imag(conj(a) * b); } // 外積

// 直線の定義
class Line {
public:
    Point a, b;
    Line() : a(Point(0, 0)), b(Point(0, 0)) {}
    Line(Point a, Point b) : a(a), b(b) {}
    Point operator[](const int _num) {
        if (_num == 0)return a;
        else if (_num == 1)return b;
        else assert(false);
    }
};

// 円の定義
class Circle {
public:
    Point p;
    ld r;
    Circle() : p(Point(0, 0)), r(0) {}
    Circle(Point p, ld r) : p(p), r(r) {}
};

// 垂線の足
Point proj(Line l, Point p) {
    ld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
    return l.a + t * (l.a - l.b);
}

// CCW
int ccw(Point a, Point b, Point c) {
    b -= a; c -= a;
    if (cross(b, c) > eps) return 1;   // a,b,cが反時計周りの順に並ぶ
    if (cross(b, c) < -eps) return -1; // a,b,cが時計周りの順に並ぶ
    if (dot(b, c) < 0) return 2;       // c,a,bの順に直線に並ぶ
    if (norm(b) < norm(c)) return -2;  // a,b,cの順に直線に並ぶ
    return 0;                          // a,c,bの順に直線に並ぶ
}

/* 交差判定 */
// 直線と直線の交差判定
bool isis_ll(Line l, Line m) { return !eq(cross(l.b - l.a, m.b - m.a), 0); }
// 直線と線分の交差判定
bool isis_ls(Line l, Line s) {
    return isis_ll(l, s) &&
    (cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps);
}
// 線分と線分の交差判定
bool isis_ss(Line s, Line t) {
    return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&
    ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;
}
// 点の直線上判定
bool isis_lp(Line l, Point p) { return (abs(cross(l.b - p, l.a - p)) < eps); }
// 点の線分上判定
bool isis_sp(Line s, Point p) { return (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps); }

/* 距離 */
// 直線と直線の交点
Point is_ll(Line s, Line t) {
    Point sv = s.b - s.a, tv = t.b - t.a;
    assert(cross(sv, tv) != 0);
    return s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv);
}

// 直線と点の距離
ld dist_lp(Line l, Point p) {
    return abs(p - proj(l, p));
}

// 直線と直線の距離
ld dist_ll(Line l, Line m) {
    return isis_ll(l, m) ? 0 : dist_lp(l, m.a);
}

// 直線と線分の距離
ld dist_ls(Line l, Line s) {
    return isis_ls(l, s) ? 0 : min(dist_lp(l, s.a), dist_lp(l, s.b));
}

// 線分と点の距離
ld dist_sp(Line s, Point p) {
    Point r = proj(s, p);
    return isis_sp(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));
}

// 線分と線分の距離
ld dist_ss(Line s, Line t) {
    if (isis_ss(s, t)) return 0;
    return min({ dist_sp(s, t.a), dist_sp(s, t.b), dist_sp(t, s.a), dist_sp(t, s.b) });
}

/* 円 */
// 円と円の交点
vector<Point> is_cc(Circle c1, Circle c2) {
    vector<Point> res;
    ld d = abs(c1.p - c2.p);
    ld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);
    ld dfr = c1.r * c1.r - rc * rc;
    if (abs(dfr) < eps) dfr = 0.0;
    else if (dfr < 0.0) return res; // no intersection
    ld rs = sqrt(dfr);
    Point diff = (c2.p - c1.p) / d;
    res.push_back(c1.p + diff * Point(rc, rs));
    if (dfr != 0.0) res.push_back(c1.p + diff * Point(rc, -rs));
    return res;
}
// 円と直線の交点
vector<Point> is_lc(Circle c, Line l) {
    vector<Point> res;
    ld d = dist_lp(l, c.p);
    if (d < c.r + eps) {
        ld len = (d > c.r) ? 0.0 : sqrt(c.r * c.r - d * d); //safety;
        Point nor = (l.a - l.b) / abs(l.a - l.b);
        res.push_back(proj(l, c.p) + len * nor);
        res.push_back(proj(l, c.p) - len * nor);
    }
    return res;
}
// 円と線分の距離
vector<Point> is_sc(Circle c, Line l) {
    vector<Point> v = is_lc(c, l), res;
    for (Point p : v)
        if (isis_sp(l, p)) res.push_back(p);
    return res;
}
// 円と点の接線
vector<Line> tangent_cp(Circle c, Point p) {
    vector<Line> ret;
    Point v = c.p - p;
    ld d = abs(v);
    ld l = sqrt(norm(v) - c.r * c.r);
    if (isnan(l)) { return ret; }
    Point v1 = v * Point(l / d, c.r / d);
    Point v2 = v * Point(l / d, -c.r / d);
    ret.push_back(Line(p, p + v1));
    if (l < eps) return ret;
    ret.push_back(Line(p, p + v2));
    return ret;
}
// 円と円の接線
vector<Line> tangent_cc(Circle c1, Circle c2) {
    vector<Line> ret;
    if (abs(c1.p - c2.p) - (c1.r + c2.r) > -eps) {
        Point center = (c1.p * c2.r + c2.p * c1.r) / (c1.r + c2.r);
        ret = tangent_cp(c1, center);
    }
    if (abs(c1.r - c2.r) > eps) {
        Point out = (-c1.p * c2.r + c2.p * c1.r) / (c1.r - c2.r);
        vector<Line> nret = tangent_cp(c1, out);
        ret.insert(ret.end(), nret.begin(), nret.end());
    }
    else {
        Point v = c2.p - c1.p;
        v /= abs(v);
        Point q1 = c1.p + v * Point(0, 1) * c1.r;
        Point q2 = c1.p + v * Point(0, -1) * c1.r;
        ret.push_back(Line(q1, q1 + v));
        ret.push_back(Line(q2, q2 + v));
    }
    return ret;
}

/* 多角形 */
typedef vector<Point> Polygon;
// 面積
ld area(const Polygon &p) {
    ld res = 0;
    int n = (int)p.size();
    for (int j = 0;j < n;j++) res += cross(p[j], p[(j + 1) % n]);
    return res / 2;
}
// 多角形の回転方向
bool is_counter_clockwise(const Polygon &poly) {
    ld angle = 0;
    int n = (int)poly.size();
    for (int i = 0;i < n;i++) {
        Point a = poly[i], b = poly[(i + 1) % n], c = poly[(i + 2) % n];
        angle += arg((c - b) / (b - a));
    }
    return angle > eps;
}
// 凸性判定
bool isConvex(const Polygon &poly){
    int n = (int)poly.size();
    if(n < 3) return false;
    int s = -3;
    for(int i = 0; i < n;i++){
        int r = ccw(poly[(i+n-1)%n],poly[i%n],poly[(i+1)%n]);
        if(r == 1 && s == -3) s = r;
        if(s*r == -1) return false;
    }
    return true;
}
// 点の内外判定
//  0 => out : 1 => on : 2 => in
int is_in_polygon(const Polygon &poly, Point p) {
    ld angle = 0;
    int n = (int)poly.size();
    for (int i = 0;i < n;i++) {
        Point a = poly[i], b = poly[(i + 1) % n];
        if (isis_sp(Line(a, b), p)) return 1;
        angle += arg((b - p) / (a - p));
    }
    return eq(angle, 0) ? 0 : 2;
}

// 凸包 : 凸多角形のある一辺上にある点を含まない
Polygon convex_hull(vector<Point> ps) {
    int n = (int)ps.size();
    if(n < 3) return ps;
    int k = 0;
    sort(ps.begin(), ps.end());
    Polygon ch(2 * n);
    for (int i = 0; i < n; ch[k++] = ps[i++])
        while (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;
    for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--])
        while (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;
    ch.resize(k - 1);
    return ch;
}
// 凸包 : 凸多角形のある一辺上にある点も含む
Polygon convex_hull2(vector<Point> ps) {
    int n = (int)ps.size();
    if (n < 3) return ps;
    sort(ps.begin(), ps.end());
    Polygon u = { ps[0], ps[1] }, l = { ps[n - 1],ps[n - 2] };
    for (int i = 2; i < n; i++) {
        for (int j = (int)u.size(); j >= 2 && ccw(u[j - 2], u[j - 1], ps[i]) >= 0;j--)u.pop_back();
        u.push_back(ps[i]);
    }
    for (int i = n - 3;i >= 0;i--) {
        for (int j = (int)l.size(); j >= 2 && ccw(l[j - 2], l[j - 1], ps[i]) >= 0;j--)l.pop_back();
        l.push_back(ps[i]);
    }
    reverse(l.begin(), l.end());
    for (int i = (int)u.size() - 2; i >= 1; i--)l.push_back(u[i]);
    return l;
}

// 凸多角形の直径
pair<pll,ld> convex_diameter(const Polygon& poly){
    int n = (int)poly.size();
    if(n == 2) return make_pair(pll(0,1),abs(poly[0]-poly[1]));
    int ii = 0, jj = 0;
    for(int i = 1;i < n;i++){
        if(poly[i].imag() > poly[ii].imag())ii = i;
        if(poly[i].imag() < poly[jj].imag())jj = i;
    }
    pll resp = make_pair(-1,-1);
    ld resd = 0;
    
    int i, maxi,j,maxj;
    i = maxi = ii; j = maxj = jj;
    while(i != maxj || j != maxi){
        ld cur = abs(poly[i] - poly[j]);
        if(resd + eps < cur){ resd = cur; resp = pll(i,j); }
        int di = (i+1)%n, dj = (j+1)%n;
        if(cross(poly[di]-poly[i],poly[dj]-poly[j]) < 0) i = di;
        else j = dj;
    }
    return make_pair(resp,resd);
}
// 凸カット
Polygon convex_cut(const Polygon &ps, Line l) {
    int n = (int)ps.size();
    Polygon Q;
    for (int i = 0;i < n;i++) {
        Point A = ps[i], B = ps[(i + 1) % n];
        Line m = Line(A, B);
        if (ccw(l.a, l.b, A) != -1) Q.push_back(A);
        if (ccw(l.a, l.b, A) * ccw(l.a, l.b, B) < 0 && isis_ll(l, m))
            Q.push_back(is_ll(l, m));
    }
    return Q;
}

// 円と多角形の共通部分
double area_of_polygon_and_circle(const Polygon& poly, const Circle c) {
    int n = (int)poly.size();
    ld r = 0;
    for (int i = n - 1, j = 0; j < n; i=j++) {
        Point v = abs(poly[j] - poly[i]) / (poly[j] - poly[i]);
        if (poly[j] == poly[i])continue;
        assert(poly[j] != poly[i]);
        Point a = (poly[i] - c.p)*v, b = (poly[j] - c.p)*v;
        ld d = norm(c.r) - norm(a.imag());
        if (abs(a.imag()) < eps) continue;
        if (d < 0)d = 0;
        d = sqrt(d);
        double l, m;
        r += norm(c.r)*((l = atan2(b.imag(), min(b.real(), -d)) - atan2(a.imag(), min(a.real(), -d)))
                        + (m = atan2(b.imag(), max(b.real(), d)) - atan2(a.imag(), max(a.real(), d))))
        + a.imag()*(min(d, max(a.real(), -d)) - max(-d, min(b.real(), d)));
        assert(-pi < l && -pi < m && l < pi && m < pi);
    }
    return r / 2;
}

// 凸多角形と凸多角形のAND O(nm)ぐらい そのうち線形時間のやつも書く
Polygon convex_polygon_and_convex_polygon(const Polygon& in1,const Polygon& in2){
    Polygon ret;
    if(in1.size()==0 || in2.size()==0) return ret;
    Polygon ps1 = in1,ps2 = in2;
    // ポリゴンを凸+並びを揃える(反時計回り) // この2点が保証されているのであればコメントアウト可
    ps1 = convex_hull(in1);ps2 = convex_hull(in2);
    int n = (int)ps1.size(),m = (int)ps2.size();
    // p2に含まれるp1の点、p1に含まれるp2の点をそれぞれ探索する
    vector<int> inpoint_of_ps1(n),inpoint_of_ps2(m);
    for(int i = 0; i < n;i++) if(is_in_polygon(ps2, ps1[i])){ ret.push_back(ps1[i]); inpoint_of_ps1[i] = 1; }
    for(int i = 0; i < m;i++) if(is_in_polygon(ps1, ps2[i])){ ret.push_back(ps2[i]); inpoint_of_ps2[i] = 1; }
    
    if(n>=2 && m >= 2){
        // p1とp2が交わる点を探索する
        for(int i = 0; i < n;i++){
            Line l1(ps1[i],ps1[(i+1)%n]);
            for(int j = 0; j < m;j++){
                Line l2(ps2[j],ps2[(j+1)%m]);
                if(dist_ss(l1,l2) < eps) ret.push_back(is_ll(l1,l2));
            }
        }
    }
    // ポリゴンを凸+並びを揃える(反時計回り)
    ret = convex_hull(ret);
    
    return ret;
}

/*
 gcd : 最大公約数
 lcm : 最小公倍数
 */
inline ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; }
inline ll lcm(ll a, ll b) { return a / gcd(a, b)*b; }

ll solve(){
    ll res = 0;
    Polygon ps1,ps2;
    ld x1,y1,x2,y2,d; cin >> x1 >> y1 >> x2 >> y2 >> d;
    
    ps1.push_back(Point(x1,y1));
    ps1.push_back(Point(x1,y2));
    ps1.push_back(Point(x2,y1));
    ps1.push_back(Point(x2,y2));
    
    if(d==0){
        ps2.push_back(Point(0,0));
    }else{
        ps2.push_back(Point(d,0));
        ps2.push_back(Point(0,d));
        ps2.push_back(Point(-d,0));
        ps2.push_back(Point(0,-d));
    }
    
    auto intersect_ps = convex_polygon_and_convex_polygon(ps1, ps2);
    ld intersect_area = area(intersect_ps);
    
    if(intersect_ps.empty()) return res;
    
    ll on_the_point = 0;
    int sz = (int)intersect_ps.size();
    for(int i = 0; i < sz;i++){
        ll x1 = (ll)intersect_ps[i].real(),y1 = (ll)intersect_ps[i].imag();
        ll x2 = (ll)intersect_ps[(i+1)%sz].real(),y2 = (ll)intersect_ps[(i+1)%sz].imag();
        on_the_point += gcd(abs(x1-x2),abs(y1-y2));
    }
    res += on_the_point;
    res += round(intersect_area-on_the_point/2.0 + 1);
    
    return res;
}
int main(void) {
    cin.tie(0); ios_base::sync_with_stdio(false);
    cout << solve() << endl;
    return 0;
}
0