結果

問題 No.325 マンハッタン距離2
ユーザー kei
提出日時 2018-10-14 18:22:54
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 1,000 ms
コード長 13,922 bytes
コンパイル時間 2,433 ms
コンパイル使用メモリ 196,764 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-12 18:20:22
合計ジャッジ時間 3,223 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 24
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
const int INF = 1e9;
const ll LINF = 1e18;
template<class S,class T> ostream& operator << (ostream& out,const pair<S,T>& o){ out << "(" << o.first << "," << o.second << ")"; return out; }
template<class T> ostream& operator << (ostream& out,const vector<T> V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << " "
    ;} return out; }
template<class T> ostream& operator << (ostream& out,const vector<vector<T> > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out
    << Mat[i];} return out; }
template<class S,class T> ostream& operator << (ostream& out,const map<S,T> mp){ out << "{ "; for(auto it = mp.begin(); it != mp.end(); it++){ out <<
    it->first << ":" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << ", "; } out << " }"; return out; }
/*
<url:https://yukicoder.me/problems/no/325>
============================================================
=================================================================
=============================================================
================================================================
*/
typedef long double ld;
typedef complex<ld> Point;
const ld eps = 1e-9, pi = acos(-1.0);
namespace std {
bool operator<(const Point &lhs, const Point &rhs) {
if (lhs.real() < rhs.real() - eps) return true;
if (lhs.real() > rhs.real() + eps) return false;
return lhs.imag() < rhs.imag();
}
}
Point input_point() { ld x, y; cin >> x >> y; return Point(x, y); } //
bool eq(ld a, ld b) { return (abs(a - b) < eps); } //
ld dot(Point a, Point b) { return real(conj(a) * b); } //
ld cross(Point a, Point b) { return imag(conj(a) * b); } //
//
class Line {
public:
Point a, b;
Line() : a(Point(0, 0)), b(Point(0, 0)) {}
Line(Point a, Point b) : a(a), b(b) {}
Point operator[](const int _num) {
if (_num == 0)return a;
else if (_num == 1)return b;
else assert(false);
}
};
//
class Circle {
public:
Point p;
ld r;
Circle() : p(Point(0, 0)), r(0) {}
Circle(Point p, ld r) : p(p), r(r) {}
};
//
Point proj(Line l, Point p) {
ld t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + t * (l.a - l.b);
}
// CCW
int ccw(Point a, Point b, Point c) {
b -= a; c -= a;
if (cross(b, c) > eps) return 1; // a,b,c
if (cross(b, c) < -eps) return -1; // a,b,c
if (dot(b, c) < 0) return 2; // c,a,b
if (norm(b) < norm(c)) return -2; // a,b,c
return 0; // a,c,b
}
/* */
//
bool isis_ll(Line l, Line m) { return !eq(cross(l.b - l.a, m.b - m.a), 0); }
//
bool isis_ls(Line l, Line s) {
return isis_ll(l, s) &&
(cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < eps);
}
//
bool isis_ss(Line s, Line t) {
return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 &&
ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;
}
//
bool isis_lp(Line l, Point p) { return (abs(cross(l.b - p, l.a - p)) < eps); }
//
bool isis_sp(Line s, Point p) { return (abs(s.a - p) + abs(s.b - p) - abs(s.b - s.a) < eps); }
/* */
//
Point is_ll(Line s, Line t) {
Point sv = s.b - s.a, tv = t.b - t.a;
assert(cross(sv, tv) != 0);
return s.a + sv * cross(tv, t.a - s.a) / cross(tv, sv);
}
//
ld dist_lp(Line l, Point p) {
return abs(p - proj(l, p));
}
//
ld dist_ll(Line l, Line m) {
return isis_ll(l, m) ? 0 : dist_lp(l, m.a);
}
//
ld dist_ls(Line l, Line s) {
return isis_ls(l, s) ? 0 : min(dist_lp(l, s.a), dist_lp(l, s.b));
}
//
ld dist_sp(Line s, Point p) {
Point r = proj(s, p);
return isis_sp(s, r) ? abs(r - p) : min(abs(s.a - p), abs(s.b - p));
}
//
ld dist_ss(Line s, Line t) {
if (isis_ss(s, t)) return 0;
return min({ dist_sp(s, t.a), dist_sp(s, t.b), dist_sp(t, s.a), dist_sp(t, s.b) });
}
/* */
//
vector<Point> is_cc(Circle c1, Circle c2) {
vector<Point> res;
ld d = abs(c1.p - c2.p);
ld rc = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d);
ld dfr = c1.r * c1.r - rc * rc;
if (abs(dfr) < eps) dfr = 0.0;
else if (dfr < 0.0) return res; // no intersection
ld rs = sqrt(dfr);
Point diff = (c2.p - c1.p) / d;
res.push_back(c1.p + diff * Point(rc, rs));
if (dfr != 0.0) res.push_back(c1.p + diff * Point(rc, -rs));
return res;
}
//
vector<Point> is_lc(Circle c, Line l) {
vector<Point> res;
ld d = dist_lp(l, c.p);
if (d < c.r + eps) {
ld len = (d > c.r) ? 0.0 : sqrt(c.r * c.r - d * d); //safety;
Point nor = (l.a - l.b) / abs(l.a - l.b);
res.push_back(proj(l, c.p) + len * nor);
res.push_back(proj(l, c.p) - len * nor);
}
return res;
}
//
vector<Point> is_sc(Circle c, Line l) {
vector<Point> v = is_lc(c, l), res;
for (Point p : v)
if (isis_sp(l, p)) res.push_back(p);
return res;
}
//
vector<Line> tangent_cp(Circle c, Point p) {
vector<Line> ret;
Point v = c.p - p;
ld d = abs(v);
ld l = sqrt(norm(v) - c.r * c.r);
if (isnan(l)) { return ret; }
Point v1 = v * Point(l / d, c.r / d);
Point v2 = v * Point(l / d, -c.r / d);
ret.push_back(Line(p, p + v1));
if (l < eps) return ret;
ret.push_back(Line(p, p + v2));
return ret;
}
//
vector<Line> tangent_cc(Circle c1, Circle c2) {
vector<Line> ret;
if (abs(c1.p - c2.p) - (c1.r + c2.r) > -eps) {
Point center = (c1.p * c2.r + c2.p * c1.r) / (c1.r + c2.r);
ret = tangent_cp(c1, center);
}
if (abs(c1.r - c2.r) > eps) {
Point out = (-c1.p * c2.r + c2.p * c1.r) / (c1.r - c2.r);
vector<Line> nret = tangent_cp(c1, out);
ret.insert(ret.end(), nret.begin(), nret.end());
}
else {
Point v = c2.p - c1.p;
v /= abs(v);
Point q1 = c1.p + v * Point(0, 1) * c1.r;
Point q2 = c1.p + v * Point(0, -1) * c1.r;
ret.push_back(Line(q1, q1 + v));
ret.push_back(Line(q2, q2 + v));
}
return ret;
}
/* */
typedef vector<Point> Polygon;
//
ld area(const Polygon &p) {
ld res = 0;
int n = (int)p.size();
for (int j = 0;j < n;j++) res += cross(p[j], p[(j + 1) % n]);
return res / 2;
}
//
bool is_counter_clockwise(const Polygon &poly) {
ld angle = 0;
int n = (int)poly.size();
for (int i = 0;i < n;i++) {
Point a = poly[i], b = poly[(i + 1) % n], c = poly[(i + 2) % n];
angle += arg((c - b) / (b - a));
}
return angle > eps;
}
//
bool isConvex(const Polygon &poly){
int n = (int)poly.size();
if(n < 3) return false;
int s = -3;
for(int i = 0; i < n;i++){
int r = ccw(poly[(i+n-1)%n],poly[i%n],poly[(i+1)%n]);
if(r == 1 && s == -3) s = r;
if(s*r == -1) return false;
}
return true;
}
//
// 0 => out : 1 => on : 2 => in
int is_in_polygon(const Polygon &poly, Point p) {
ld angle = 0;
int n = (int)poly.size();
for (int i = 0;i < n;i++) {
Point a = poly[i], b = poly[(i + 1) % n];
if (isis_sp(Line(a, b), p)) return 1;
angle += arg((b - p) / (a - p));
}
return eq(angle, 0) ? 0 : 2;
}
// :
Polygon convex_hull(vector<Point> ps) {
int n = (int)ps.size();
if(n < 3) return ps;
int k = 0;
sort(ps.begin(), ps.end());
Polygon ch(2 * n);
for (int i = 0; i < n; ch[k++] = ps[i++])
while (k >= 2 && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;
for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = ps[i--])
while (k >= t && ccw(ch[k - 2], ch[k - 1], ps[i]) <= 0) --k;
ch.resize(k - 1);
return ch;
}
// :
Polygon convex_hull2(vector<Point> ps) {
int n = (int)ps.size();
if (n < 3) return ps;
sort(ps.begin(), ps.end());
Polygon u = { ps[0], ps[1] }, l = { ps[n - 1],ps[n - 2] };
for (int i = 2; i < n; i++) {
for (int j = (int)u.size(); j >= 2 && ccw(u[j - 2], u[j - 1], ps[i]) >= 0;j--)u.pop_back();
u.push_back(ps[i]);
}
for (int i = n - 3;i >= 0;i--) {
for (int j = (int)l.size(); j >= 2 && ccw(l[j - 2], l[j - 1], ps[i]) >= 0;j--)l.pop_back();
l.push_back(ps[i]);
}
reverse(l.begin(), l.end());
for (int i = (int)u.size() - 2; i >= 1; i--)l.push_back(u[i]);
return l;
}
//
pair<pll,ld> convex_diameter(const Polygon& poly){
int n = (int)poly.size();
if(n == 2) return make_pair(pll(0,1),abs(poly[0]-poly[1]));
int ii = 0, jj = 0;
for(int i = 1;i < n;i++){
if(poly[i].imag() > poly[ii].imag())ii = i;
if(poly[i].imag() < poly[jj].imag())jj = i;
}
pll resp = make_pair(-1,-1);
ld resd = 0;
int i, maxi,j,maxj;
i = maxi = ii; j = maxj = jj;
while(i != maxj || j != maxi){
ld cur = abs(poly[i] - poly[j]);
if(resd + eps < cur){ resd = cur; resp = pll(i,j); }
int di = (i+1)%n, dj = (j+1)%n;
if(cross(poly[di]-poly[i],poly[dj]-poly[j]) < 0) i = di;
else j = dj;
}
return make_pair(resp,resd);
}
//
Polygon convex_cut(const Polygon &ps, Line l) {
int n = (int)ps.size();
Polygon Q;
for (int i = 0;i < n;i++) {
Point A = ps[i], B = ps[(i + 1) % n];
Line m = Line(A, B);
if (ccw(l.a, l.b, A) != -1) Q.push_back(A);
if (ccw(l.a, l.b, A) * ccw(l.a, l.b, B) < 0 && isis_ll(l, m))
Q.push_back(is_ll(l, m));
}
return Q;
}
//
double area_of_polygon_and_circle(const Polygon& poly, const Circle c) {
int n = (int)poly.size();
ld r = 0;
for (int i = n - 1, j = 0; j < n; i=j++) {
Point v = abs(poly[j] - poly[i]) / (poly[j] - poly[i]);
if (poly[j] == poly[i])continue;
assert(poly[j] != poly[i]);
Point a = (poly[i] - c.p)*v, b = (poly[j] - c.p)*v;
ld d = norm(c.r) - norm(a.imag());
if (abs(a.imag()) < eps) continue;
if (d < 0)d = 0;
d = sqrt(d);
double l, m;
r += norm(c.r)*((l = atan2(b.imag(), min(b.real(), -d)) - atan2(a.imag(), min(a.real(), -d)))
+ (m = atan2(b.imag(), max(b.real(), d)) - atan2(a.imag(), max(a.real(), d))))
+ a.imag()*(min(d, max(a.real(), -d)) - max(-d, min(b.real(), d)));
assert(-pi < l && -pi < m && l < pi && m < pi);
}
return r / 2;
}
// AND O(nm)
Polygon convex_polygon_and_convex_polygon(const Polygon& in1,const Polygon& in2){
Polygon ret;
if(in1.size()==0 || in2.size()==0) return ret;
Polygon ps1 = in1,ps2 = in2;
// () //
ps1 = convex_hull(in1);ps2 = convex_hull(in2);
int n = (int)ps1.size(),m = (int)ps2.size();
// p2p1p1p2
vector<int> inpoint_of_ps1(n),inpoint_of_ps2(m);
for(int i = 0; i < n;i++) if(is_in_polygon(ps2, ps1[i])){ ret.push_back(ps1[i]); inpoint_of_ps1[i] = 1; }
for(int i = 0; i < m;i++) if(is_in_polygon(ps1, ps2[i])){ ret.push_back(ps2[i]); inpoint_of_ps2[i] = 1; }
if(n>=2 && m >= 2){
// p1p2
for(int i = 0; i < n;i++){
Line l1(ps1[i],ps1[(i+1)%n]);
for(int j = 0; j < m;j++){
Line l2(ps2[j],ps2[(j+1)%m]);
if(dist_ss(l1,l2) < eps) ret.push_back(is_ll(l1,l2));
}
}
}
// ()
ret = convex_hull(ret);
return ret;
}
/*
gcd :
lcm :
*/
inline ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; }
inline ll lcm(ll a, ll b) { return a / gcd(a, b)*b; }
ll solve(){
ll res = 0;
Polygon ps1,ps2;
ld x1,y1,x2,y2,d; cin >> x1 >> y1 >> x2 >> y2 >> d;
ps1.push_back(Point(x1,y1));
ps1.push_back(Point(x1,y2));
ps1.push_back(Point(x2,y1));
ps1.push_back(Point(x2,y2));
if(d==0){
ps2.push_back(Point(0,0));
}else{
ps2.push_back(Point(d,0));
ps2.push_back(Point(0,d));
ps2.push_back(Point(-d,0));
ps2.push_back(Point(0,-d));
}
auto intersect_ps = convex_polygon_and_convex_polygon(ps1, ps2);
ld intersect_area = area(intersect_ps);
if(intersect_ps.empty()) return res;
ll on_the_point = 0;
int sz = (int)intersect_ps.size();
for(int i = 0; i < sz;i++){
Point diffvec = intersect_ps[i] - intersect_ps[(i+1)%sz];
string sx = to_string(diffvec.imag());
string sy = to_string(diffvec.real());
ll x = strtoll(sx.c_str(),NULL,10);
ll y = strtoll(sy.c_str(),NULL,10);
x = abs(x); y = abs(y);
on_the_point += gcd(x,y);
}
res += on_the_point;
res += round(intersect_area-on_the_point/2.0 + 1);
return res;
}
int main(void) {
cin.tie(0); ios_base::sync_with_stdio(false);
cout << solve() << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0