結果
| 問題 |
No.117 組み合わせの数
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2018-10-31 05:53:20 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 811 ms / 5,000 ms |
| コード長 | 3,875 bytes |
| コンパイル時間 | 14,564 ms |
| コンパイル使用メモリ | 379,060 KB |
| 実行使用メモリ | 40,192 KB |
| 最終ジャッジ日時 | 2024-11-19 11:17:56 |
| 合計ジャッジ時間 | 14,510 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 1 |
ソースコード
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
#[allow(unused_mut)]
let mut s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
#[allow(non_snake_case)]
#[allow(unused_mut)]
let mut $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
#[allow(unused_macros)]
macro_rules! debug {
($($a:expr),*) => {
eprintln!(concat!($(stringify!($a), " = {:?}, "),*), $($a),*);
}
}
pub fn gcd_ext(a: u64, b: u64) -> (u64, i64, i64) {
let (mut x, mut x_old) = (0i64, 1i64);
let (mut y, mut y_old) = (1i64, 0i64);
let (mut r, mut r_old) = (b as i64, a as i64);
let mut q: i64;
let mut t: i64;
while r != 0 {
q = r_old / r;
t = r;
r = r_old - q * r;
r_old = t;
t = x;
x = x_old - q * x;
x_old = t;
t = y;
y = y_old - q * y;
y_old = t;
}
(r_old as u64, x_old, y_old)
}
pub fn modular_multiplicative_inverse(a: u64, m: u64) -> u64 {
let (_, mut x, _) = gcd_ext(a, m);
x %= m as i64;
if x < 0 {
x += m as i64;
}
x as u64
}
pub fn factorial_table_mod(max: u32, _mod: u64) -> Vec<u64> {
let mut table = vec![0; (max + 1) as usize];
table[0] = 1;
for i in 0..(max as usize) {
table[i + 1] = table[i] * ((i + 1) as u64) % _mod;
}
table
}
pub fn inv_factorial_table_mod(max: u32, max_fac: u64, _mod: u64) -> Vec<u64> {
let mut table = vec![0; (max + 1) as usize];
table[max as usize] = modular_multiplicative_inverse(max_fac, _mod);
for i in (0..(max as usize)).rev() {
table[i] = table[i + 1] * ((i + 1) as u64) % _mod;
}
table
}
fn main() {
input! {
t: usize,
queries: [String; t],
}
let _mod = 10u64.pow(9) + 7;
let n_max = 10u32.pow(6) * 2;
let fac = factorial_table_mod(n_max, _mod);
let fac_inv = inv_factorial_table_mod(n_max, fac[n_max as usize], _mod);
for s in queries {
debug!(s);
let v: Vec<_> = s.split(|c| c == '(' || c == ')' || c == ',').collect();
let n: usize = v[1].parse().unwrap();
let k: usize = v[2].parse().unwrap();
if v[0] == "C" && n >= k {
let a = fac[n];
let b = fac_inv[k];
let c = fac_inv[n - k];
let bc = (b * c) % _mod;
println!("{}", (a * bc) % _mod);
} else if v[0] == "P" && n >= k {
let a = fac[n];
let b = fac_inv[n - k];
println!("{}", (a * b) % _mod);
} else if v[0] == "H" && n > 0 {
let a = fac[n + k - 1];
let b = fac_inv[k];
let c = fac_inv[n - 1];
let bc = (b * c) % _mod;
println!("{}", (a * bc) % _mod);
} else if v[0] == "H" && n == 0 && k == 0 {
println!("1");
} else {
println!("0");
}
}
}