結果
| 問題 |
No.147 試験監督(2)
|
| コンテスト | |
| ユーザー |
xuzijian629
|
| 提出日時 | 2018-10-31 18:11:51 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 8,153 bytes |
| コンパイル時間 | 2,383 ms |
| コンパイル使用メモリ | 216,512 KB |
| 最終ジャッジ日時 | 2025-01-06 15:15:30 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 1 TLE * 3 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using i64 = int64_t;
using vi = vector<i64>;
using vvi = vector<vi>;
constexpr i64 MOD = 1e9 + 7;
template<int n>
struct mat {
vvi d;
mat() {
d = vvi(n, vi(n));
}
mat(initializer_list<initializer_list<i64>> m) {
for (auto a: m) {
vi row(a.begin(), a.end());
d.emplace_back(row);
}
assert(n == d.size());
assert(n == d.front().size());
};
mat operator+(const mat rhs) {
mat ret;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
ret.d[i][j] = d[i][j] + rhs.d[i][j];
ret.d[i][j] %= MOD;
ret.d[i][j] += MOD;
ret.d[i][j] %= MOD;
}
}
return ret;
}
mat operator-(const mat rhs) {
mat ret;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
ret.d[i][j] = d[i][j] - rhs.d[i][j];
ret.d[i][j] %= MOD;
ret.d[i][j] += MOD;
ret.d[i][j] %= MOD;
}
}
return ret;
}
mat operator*(const mat rhs) {
mat ret;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
ret.d[i][j] += d[i][k] * rhs.d[k][j];
ret.d[i][j] %= MOD;
ret.d[i][j] += MOD;
ret.d[i][j] %= MOD;
}
}
}
return ret;
}
mat operator*(const i64 k) {
mat ret;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
ret.d[i][j] = d[i][j] * k;
ret.d[i][j] %= MOD;
ret.d[i][j] += MOD;
ret.d[i][j] %= MOD;
}
}
return ret;
}
static mat eye() {
mat ret;
for (int i = 0; i < n; i++) {
ret.d[i][i] = 1;
}
return ret;
}
};
template<int k>
mat<k> pow(mat<k> a, i64 n) {
if (n == 0) {
return mat<k>::eye();
}
if (n % 2 == 0) {
mat<k> t = pow(a, n / 2);
return t * t;
}
return a * pow(a, n - 1);
}
i64 fib(i64 n) {
if (n <= 1) return n;
mat<2> f{{1, 1}, {1, 0}};
mat<2> res = pow(f, n - 2);
return (res.d[0][0] + res.d[0][1]) % MOD;
}
// 負の数は扱っていない
// 宣言するときはconvert関数を使う
// 掛け算でFFTをやるので畳み込み後の配列の最大要素を1e13程度にして誤差を小さくしたい
// BASELOGを大きくすると桁数が1/BASELOGになる代わりに配列の要素が指数関数的に大きくなる
// 掛け算をしないのであれば定数倍早くなるのでBASELOGを大きくするとよい。掛け算をするときは3が精度的に安心
constexpr i64 BASE = 1000;
constexpr int BASELOG = 3;
struct BigInt {
// 掛け算のために本来の最大桁数の2倍必要
vi digit = vi(1 << 18);
int size;
BigInt(int size = 1, i64 a = 0) : size(size) {
digit[0] = a;
}
BigInt(const BigInt& a) {
size = a.size;
digit = vi(a.digit);
}
};
bool operator<(BigInt x, BigInt y) {
if (x.size != y.size) {
return x.size < y.size;
}
for (int i = x.size - 1; i >= 0; i--) {
if (x.digit[i] != y.digit[i]) {
return x.digit[i] < y.digit[i];
}
}
return false;
}
bool operator>(BigInt x, BigInt y) {
return y < x;
}
bool operator<=(BigInt x, BigInt y) {
return !(y < x);
}
bool operator>=(BigInt x, BigInt y) {
return !(x < y);
}
bool operator!=(BigInt x, BigInt y) {
return x < y || y < x;
}
bool operator==(BigInt x, BigInt y) {
return !(x < y) && !(y < x);
}
BigInt normal(BigInt x, bool all = false) {
if (all) {
x.size = int(x.digit.size()) - 1;
}
for (int i = 0; i < x.size; i++) {
while (x.digit[i] < 0) {
x.digit[i + 1] -= (-x.digit[i] + BASE - 1) / BASE;
x.digit[i] = x.digit[i] % BASE + BASE;
}
while (x.digit[i] >= BASE) {
x.digit[i + 1] += x.digit[i] / BASE;
x.digit[i] = x.digit[i] % BASE;
}
}
while (x.digit[x.size]) {
x.digit[x.size + 1] = x.digit[x.size] / BASE;
x.digit[x.size] = x.digit[x.size] % BASE;
x.size++;
}
while (x.size > 1 && x.digit[x.size - 1] == 0) {
x.size--;
}
return x;
}
BigInt convert(i64 a) {
return normal(BigInt(1, a), true);
}
BigInt convert(const string& s) {
BigInt x;
x.size = 0;
int i = s.size() % BASELOG;
if (i > 0) {
i -= BASELOG;
}
for (; i < int(s.size()); i += BASELOG) {
i64 a = 0;
for (int j = 0; j < BASELOG; j++) {
a = 10 * a + (i + j >= 0 ? s[i + j] - '0' : 0);
}
x.digit[x.size++] = a;
}
reverse(x.digit.begin(), x.digit.begin() + x.size);
return normal(x);
}
ostream &operator<<(ostream& os, BigInt x) {
os << x.digit[x.size - 1];
for (int i = x.size - 2; i >= 0; i--) {
os << setw(BASELOG) << setfill('0') << x.digit[i];
}
return os;
}
istream &operator>>(istream& is, BigInt &x) {
string s;
is >> s;
x = convert(s);
return is;
}
string to_string(BigInt &x) {
stringstream ss;
ss << x.digit[x.size - 1];
for (int i = x.size - 2; i >= 0; i--) {
ss << setw(BASELOG) << setfill('0') << x.digit[i];
}
return ss.str();
}
BigInt operator+(BigInt x, BigInt y) {
if (x.size < y.size) {
x.size = y.size;
}
for (int i = 0; i < y.size; i++) {
x.digit[i] += y.digit[i];
}
return normal(x);
}
BigInt operator-(BigInt x, BigInt y) {
assert(x >= y);
for (int i = 0; i < y.size; i++) {
x.digit[i] -= y.digit[i];
}
return normal(x);
}
BigInt operator*(BigInt x, i64 a) {
for (int i = 0; i < x.size; i++) {
x.digit[i] *= a;
}
return normal(x);
}
void fft(vector<complex<double>>& a, bool inv = false) {
int n = int(a.size());
if (n == 1) return;
vector<complex<double>> even(n / 2), odd(n / 2);
for (int i = 0; i < n / 2; i++) {
even[i] = a[2 * i];
odd[i] = a[2 * i + 1];
}
fft(even, inv);
fft(odd, inv);
complex<double> omega = polar(1.0, (-2 * inv + 1) * 2 * acos(-1) / n);
complex<double> pow_omega = 1.0;
for (int i = 0; i < n / 2; i++) {
a[i] = even[i] + pow_omega * odd[i];
a[i + n / 2] = even[i] - pow_omega * odd[i];
pow_omega *= omega;
}
}
void conv(vector<complex<double>>& a, vector<complex<double>>& b) {
fft(a);
fft(b);
int n = int(a.size());
for (int i = 0; i < n; i++) {
a[i] *= b[i] / complex<double>(n);
}
fft(a, true);
}
void conv(vi& a, vi& b) {
vector<complex<double>> ac, bc;
for (int i = 0; i < a.size(); i++) {
ac.push_back(a[i]);
bc.push_back(b[i]);
}
conv(ac, bc);
a.resize(ac.size());
for (int i = 0; i < ac.size(); i++) {
a[i] = long(real(ac[i]) + 0.5);
}
}
BigInt operator*(BigInt x, BigInt y) {
conv(x.digit, y.digit);
return normal(x, true);
}
pair<BigInt, i64> divmod(BigInt x, i64 a) {
i64 c = 0, t;
for (int i = x.size - 1; i >= 0; i--) {
t = BASE * c + x.digit[i];
x.digit[i] = t / a;
c = t % a;
}
return pair<BigInt, i64>(normal(x), c);
}
BigInt operator/(BigInt x, i64 a) {
return divmod(x, a).first;
}
i64 operator%(BigInt x, i64 a) {
return divmod(x, a).second;
}
i64 modpow(i64 a, i64 n, i64 mod) {
if (n == 0) return 1;
if (n % 2 == 0) {
i64 t = modpow(a, n / 2, mod);
return t * t % mod;
}
return a % mod * modpow(a, n - 1, mod) % mod;
}
int main() {
int n;
cin >> n;
i64 ans = 1;
for (int i = 0; i < n; i++) {
i64 c;
string D;
cin >> c >> D;
i64 d = convert(D) % MOD;
ans *= modpow(fib(c + 2), d, MOD);
ans %= MOD;
}
cout << ans << endl;
}
xuzijian629