結果
| 問題 |
No.230 Splarraay スプラレェーイ
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2018-11-21 02:12:34 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,741 bytes |
| コンパイル時間 | 1,881 ms |
| コンパイル使用メモリ | 203,248 KB |
| 最終ジャッジ日時 | 2025-01-06 17:02:21 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 4 WA * 13 |
ソースコード
#include <bits/stdc++.h>
#define show(x) std::cerr << #x << " = " << x << std::endl
using ll = long long;
using ull = unsigned long long;
template <typename T>
constexpr T INF = std::numeric_limits<T>::max() / 10;
constexpr std::size_t PC(ull v) { return v = (v & 0x5555555555555555ULL) + (v >> 1 & 0x5555555555555555ULL), v = (v & 0x3333333333333333ULL) + (v >> 2 & 0x3333333333333333ULL), v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL, static_cast<std::size_t>(v * 0x0101010101010101ULL >> 56 & 0x7f); }
constexpr std::size_t LG(ull v) { return v == 0 ? 0 : (v--, v |= (v >> 1), v |= (v >> 2), v |= (v >> 4), v |= (v >> 8), v |= (v >> 16), v |= (v >> 32), PC(v)); }
constexpr ull SZ(const ull v) { return 1ULL << LG(v); }
template <typename Base>
class LazySegmentTree
{
public:
using BaseAlgebra = Base;
using ValMonoid = typename BaseAlgebra::ValMonoid;
using OpMonoid = typename BaseAlgebra::OpMonoid;
using T = typename BaseAlgebra::T;
using F = typename BaseAlgebra::OpMonoid::T;
LazySegmentTree(const std::size_t n) : data_num(n), half(SZ(n)), value(half << 1, ValMonoid::id()), action(half << 1, OpMonoid::id()) {}
template <typename InIt>
LazySegmentTree(const InIt first, const InIt last) : data_num(distance(first, last)), half(SZ(data_num)), value(half << 1, ValMonoid::id()), action(half << 1, OpMonoid::id())
{
copy(first, last, value.begin() + half);
for (std::size_t i = half - 1; i >= 1; i--) { up(i); }
}
T accumulate(const std::size_t L, const std::size_t R) const
{
auto arec = [&](auto&& self, const std::size_t index, const std::size_t left, const std::size_t right) -> T {
if (L <= left and right <= R) {
return value[index];
} else if (right <= L or R <= left) {
return ValMonoid::id();
} else {
return act(action[index], acc(self(self, index << 1, left, (left + right) >> 1), self(self, index << 1 | 1, (left + right) >> 1, right)));
}
};
return arec(arec, 1, 0, half);
}
void modify(const std::size_t L, const std::size_t R, const F& f)
{
auto mrec = [&](auto&& self, const std::size_t index, const std::size_t left, const std::size_t right) -> void {
if (L <= left and right <= R) {
this->update(index, f);
} else if (right <= L or R <= left) {
} else {
this->update(index << 1, action[index]), this->update(index << 1 | 1, action[index]);
self(self, index << 1, left, (left + right) >> 1), self(self, index << 1 | 1, (left + right) >> 1, right);
this->up(index), action[index] = OpMonoid::id();
}
};
mrec(mrec, 1, 0, half);
}
private:
void up(const std::size_t i) { value[i] = acc(value[i << 1], value[i << 1 | 1]); }
void update(const std::size_t i, const F& f) { value[i] = act(f, value[i]), action[i] = compose(f, action[i]); }
const std::size_t data_num, half;
std::vector<T> value;
std::vector<F> action;
const ValMonoid acc{};
const OpMonoid compose{};
const BaseAlgebra act{};
};
struct Sum_Set
{
using X = ll;
using T = std::pair<ll, ll>; // (value, num)
struct ValMonoid
{
T operator()(const T& a, const T& b) const { return {a.first + b.first, a.second + b.second}; }
static constexpr T id() { return {0, 0}; }
};
struct OpMonoid
{
using T = X;
T operator()(const T& f1, const T& f2) const { return (f1 != INF<T>) ? f1 : f2; }
static constexpr T id() { return INF<T>; }
};
T operator()(const OpMonoid::T& f, const T& x) const { return (f != INF<X>) ? T{x.second * f, x.second} : x; }
};
int main()
{
int N, Q;
std::cin >> N >> Q;
using T = Sum_Set::T;
std::vector<T> v(N, {0, 1});
LazySegmentTree<Sum_Set> seg1(v.begin(), v.end()), seg2(v.begin(), v.end());
ll b1 = 0, b2 = 0;
for (int q = 0, x, l, r; q < Q; q++) {
std::cin >> x >> l >> r;
if (x == 0) {
const ll sum = seg1.accumulate(l, r + 1).first;
const ll num = seg2.accumulate(l, r + 1).first;
const ll two = sum - num, one = num - two;
if (two != one) { (two > one ? b2 : b1) += std::max(two, one); }
} else if (x == 1) {
seg1.modify(l, r + 1, 1), seg2.modify(l, r + 1, 1);
} else {
seg1.modify(l, r + 1, 2), seg2.modify(l, r + 1, 1);
}
}
const ll sum = seg1.accumulate(0, N).first;
const ll num = seg2.accumulate(0, N).first;
const ll two = sum - num + b2, one = num - two + b1;
std::cout << one << " " << two << std::endl;
return 0;
}