結果
問題 | No.117 組み合わせの数 |
ユーザー | mikit |
提出日時 | 2018-12-06 03:10:44 |
言語 | Java21 (openjdk 21) |
結果 |
AC
|
実行時間 | 501 ms / 5,000 ms |
コード長 | 6,744 bytes |
コンパイル時間 | 2,562 ms |
コンパイル使用メモリ | 91,496 KB |
実行使用メモリ | 99,928 KB |
最終ジャッジ日時 | 2024-09-13 13:29:10 |
合計ジャッジ時間 | 4,121 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ソースコード
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.IOException; import java.io.InputStreamReader; import java.io.UncheckedIOException; import java.util.Objects; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author mikit */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; LightScanner in = new LightScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); D solver = new D(); solver.solve(1, in, out); out.close(); } static class D { public void solve(int testNumber, LightScanner in, PrintWriter out) { ModMath m = new ModMath(); int t = in.ints(); Factorial f = m.getFactorial(2100000); for (int i = 0; i < t; i++) { String s = in.string(); int n = Integer.parseInt(s.substring(2, s.indexOf(','))); int r = Integer.parseInt(s.substring(s.indexOf(',') + 1, s.indexOf(')'))); switch (s.charAt(0)) { case 'C': out.println(f.ncr(n, r)); break; case 'P': out.println(f.npr(n, r)); break; case 'H': out.println(f.nhr(n, r)); break; } } //*/ /*long n = in.longs(), k = in.longs(); long ans = 1; for (int i = 0; i < k; i++) { ans *= (n + i); ans %= MOD; } ModMath m = new ModMath(); for (int i = 2; i<= k; i++) { System.out.println(m.inv(i)); ans *= m.inv(i); ans %= MOD; } out.println(ans);*/ } } static class Vec3i { public final int x; public final int y; public final int z; public Vec3i(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Vec3i vec3i = (Vec3i) o; return x == vec3i.x && y == vec3i.y && z == vec3i.z; } public int hashCode() { return Objects.hash(x, y, z); } public String toString() { return "(" + x + ", " + y + ", " + z + ")"; } } static class Vec3l { private final long x; private final long y; private final long z; public Vec3l(long x, long y, long z) { this.x = x; this.y = y; this.z = z; } public long getX() { return x; } public long getY() { return y; } public long getZ() { return z; } public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Vec3i vec3i = (Vec3i) o; return x == vec3i.x && y == vec3i.y && z == vec3i.z; } public int hashCode() { return Objects.hash(x, y, z); } public String toString() { return "(" + x + ", " + y + ", " + z + ")"; } } static class ModMath { private static final int DEFAULT_MOD = 1_000_000_007; private final long mod; public ModMath(long mod) { this.mod = mod; } public ModMath() { this(DEFAULT_MOD); } public long mod(long x) { x %= mod; return x < 0 ? x + mod : x; } public long inv(long x) { return mod(LongEuclidSolver.solve(x, -mod).getX()); } public Factorial getFactorial(int n) { return new Factorial(this, n); } } static class LightScanner { private BufferedReader reader = null; private StringTokenizer tokenizer = null; public LightScanner(InputStream in) { reader = new BufferedReader(new InputStreamReader(in)); } public String string() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new UncheckedIOException(e); } } return tokenizer.nextToken(); } public int ints() { return Integer.parseInt(string()); } } static class LongEuclidSolver { private LongEuclidSolver() { } public static Vec3l solve(long p, long q) { if (q == 0) { return new Vec3l(p, 1, 0); } Vec3l vals = solve(q, p % q); long a = vals.getY(); long b = vals.getX() - (p / q) * a; return new Vec3l(a, b, vals.getZ()); } } static class Factorial { private final ModMath mod; private final int max; private final long[] natural; private final long[] reverse; public Factorial(ModMath mod, int max) { this.mod = mod; this.max = max; this.natural = new long[max]; this.reverse = new long[max]; natural[0] = 1; for (int i = 1; i < max; i++) { natural[i] = mod.mod(natural[i - 1] * i); } reverse[max - 1] = mod.inv(natural[max - 1]); for (int i = max - 1; i > 0; i--) { reverse[i - 1] = mod.mod(reverse[i] * i); } } public long npr(int n, int r) { return n < r ? 0 : mod.mod(natural[n] * reverse[n - r]); } public long ncr(int n, int r) { return mod.mod(npr(n, r) * reverse[r]); } public long nhr(int n, int r) { return (n | r) == 0 ? 1 : ncr(n + r - 1, r); } public String toString() { return "Factorial{" + "natural=" + Arrays.toString(natural) + ", reverse=" + Arrays.toString(reverse) + '}'; } } }