結果
問題 | No.117 組み合わせの数 |
ユーザー | FF256grhy |
提出日時 | 2018-12-14 01:44:55 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 164 ms / 5,000 ms |
コード長 | 4,658 bytes |
コンパイル時間 | 1,820 ms |
コンパイル使用メモリ | 174,548 KB |
実行使用メモリ | 20,748 KB |
最終ジャッジ日時 | 2024-09-25 04:54:36 |
合計ジャッジ時間 | 2,772 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long signed int LL; typedef long long unsigned int LU; #define incID(i, l, r) for(int i = (l) ; i < (r); i++) #define incII(i, l, r) for(int i = (l) ; i <= (r); i++) #define decID(i, l, r) for(int i = (r) - 1; i >= (l); i--) #define decII(i, l, r) for(int i = (r) ; i >= (l); i--) #define inc(i, n) incID(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec(i, n) decID(i, 0, n) #define dec1(i, n) decII(i, 1, n) #define inII(v, l, r) ((l) <= (v) && (v) <= (r)) #define inID(v, l, r) ((l) <= (v) && (v) < (r)) #define PB push_back #define EB emplace_back #define MP make_pair #define FI first #define SE second #define PQ priority_queue #define ALL(v) v.begin(), v.end() #define RALL(v) v.rbegin(), v.rend() #define FOR(it, v) for(auto it = v.begin(); it != v.end(); ++it) #define RFOR(it, v) for(auto it = v.rbegin(); it != v.rend(); ++it) template<typename T> bool setmin(T & a, T b) { if(b < a) { a = b; return true; } else { return false; } } template<typename T> bool setmax(T & a, T b) { if(b > a) { a = b; return true; } else { return false; } } template<typename T> bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } } template<typename T> bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } } template<typename T> T gcd(T a, T b) { return (b == 0 ? a : gcd(b, a % b)); } template<typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; } // ---- ---- template<int N = 0> class ModInt { private: LL v = 0; static LL m; public: ModInt() { } ModInt(LL vv) { setval(vv); } ModInt & setval(LL vv) { v = vv % m; if(v < 0) { v += m; } return (*this); } static void setmod(LL mm) { m = mm; } LL getval() const { return v; } ModInt & operator+=(const ModInt & b) { return setval(v + b.v); } ModInt & operator-=(const ModInt & b) { return setval(v - b.v); } ModInt & operator*=(const ModInt & b) { return setval(v * b.v); } ModInt & operator/=(const ModInt & b) { return setval(v * b.inv()); } ModInt & operator^=( LU b) { return setval(ex(v, b)); } ModInt operator+ ( ) const { return ModInt(+v); } ModInt operator- ( ) const { return ModInt(-v); } ModInt operator+ (const ModInt & b) const { return ModInt(v + b.v); } ModInt operator- (const ModInt & b) const { return ModInt(v - b.v); } ModInt operator* (const ModInt & b) const { return ModInt(v * b.v); } ModInt operator/ (const ModInt & b) const { return ModInt(v * b.inv()); } ModInt operator^ ( LU b) const { return ModInt(ex(v, b)); } LL inv() const { LL x = (ex_gcd(v, m).FI + m) % m; assert(v * x % m == 1); return x; } LL ex(LL a, LU b) const { LL D = 64, x[64], y = 1; inc(i, D) { if((b >> i) == 0) { D = i; break; } } inc(i, D) { x[i] = (i == 0 ? a : x[i - 1] * x[i - 1]) % m; } inc(i, D) { if((b >> i) & 1) { (y *= x[i]) %= m; } } return y; } pair<LL, LL> ex_gcd(LL a, LL b) const { if(b == 0) { return MP(1, 0); } auto p = ex_gcd(b, a % b); return MP(p.SE, p.FI - (a / b) * p.SE); } }; template<int N> LL ModInt<N>::m; template<int N> ModInt<N> operator+(LL a, const ModInt<N> & b) { return b + a; } template<int N> ModInt<N> operator-(LL a, const ModInt<N> & b) { return -b + a; } template<int N> ModInt<N> operator*(LL a, const ModInt<N> & b) { return b * a; } template<int N> ModInt<N> operator/(LL a, const ModInt<N> & b) { return a * b.inv(); } template<int N> istream & operator>>(istream & is, ModInt<N> & b) { LL v; is >> v; b.setval(v); return is; } template<int N> ostream & operator<<(ostream & os, const ModInt<N> & b) { return (os << b.getval()); } // ---- template<int N = 0> struct Combination { LL n; vector<ModInt<N>> f; Combination(LL nn) { n = nn; f.PB(1); inc1(i, n) { f.PB(f.back() * i); } } ModInt<N> P(LL a, LL b) { assert(inII(a, 0, n) && inII(b, 0, n)); return (a < b ? 0 : f[a] / f[a - b]); } ModInt<N> C(LL a, LL b) { assert(inII(a, 0, n) && inII(b, 0, n)); return (a < b ? 0 : f[a] / f[a - b] / f[b]); } ModInt<N> H(LL a, LL b) { assert(inII(a, 0, n) && inII(b, 0, n) && inII(a + b - 1, -1, n)); return (a == 0 ? (b == 0 ? 1 : 0) : f[a + b - 1] / f[a - 1] / f[b]); } }; // ---- ---- int main() { ModInt<>::setmod(1e9 + 7); Combination<> comb(2000000 - 1); int t; scanf("%d\n", &t); inc(i, t) { int a, b; char c; scanf("%c(%d,%d)\n", &c, &a, &b); if(c == 'P') { cout << comb.P(a, b) << "\n"; } if(c == 'C') { cout << comb.C(a, b) << "\n"; } if(c == 'H') { cout << comb.H(a, b) << "\n"; } } return 0; }