結果

問題 No.117 組み合わせの数
ユーザー Yang33Yang33
提出日時 2019-01-21 15:56:17
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 92 ms / 5,000 ms
コード長 4,251 bytes
コンパイル時間 1,709 ms
コンパイル使用メモリ 170,288 KB
実行使用メモリ 34,560 KB
最終ジャッジ日時 2024-09-15 13:11:49
合計ジャッジ時間 2,230 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 92 ms
34,560 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

using VS = vector<string>;    using LL = long long;
using VI = vector<int>;       using VVI = vector<VI>;
using PII = pair<int, int>;   using PLL = pair<LL, LL>;
using VL = vector<LL>;        using VVL = vector<VL>;

#define ALL(a)  begin((a)),end((a))
#define RALL(a) (a).rbegin(), (a).rend()
#define SZ(a) int((a).size())
#define SORT(c) sort(ALL((c)))
#define RSORT(c) sort(RALL((c)))
#define UNIQ(c) (c).erase(unique(ALL((c))), end((c)))
#define FOR(i, s, e) for (int(i) = (s); (i) < (e); (i)++)
#define FORR(i, s, e) for (int(i) = (s); (i) > (e); (i)--)
//#pragma GCC optimize ("-O3") 
#ifdef YANG33
#include "mydebug.hpp"
#else
#define DD(x) 
#endif
const int INF = 1e9;                          const LL LINF = 1e16;
const LL MOD = 1e9+7;                    const double PI = acos(-1.0);
int DX[8] = { 0, 0, 1, -1, 1, 1, -1, -1 };    int DY[8] = { 1, -1, 0, 0, 1, -1, 1, -1 };

/* ------問題------

-----問題ここまで----- */
/* -----解説等-----

----解説ここまで---- */

template <::std::uint_fast32_t MODULO> class modint {
public:
	using uint32 = ::std::uint_fast32_t; using uint64 = ::std::uint_fast64_t; using value_type = uint32; uint32 a; modint() noexcept : a(0) {}modint(const signed x) noexcept : a(x) {}modint(const long long x) noexcept : a(x%MODULO) {}modint(const uint32 x) noexcept : a(x) {}modint operator+(const modint &o) const noexcept { return a + o.a < MODULO ? modint(a + o.a) : modint(a + o.a - MODULO); }modint operator-(const modint &o) const noexcept { return modint(a < o.a ? a + MODULO - o.a : a - o.a); }modint operator*(const modint &o) const noexcept { return modint(static_cast<uint64>(a) * o.a % MODULO); }modint operator/(const modint &o) const { return modint(static_cast<uint64>(a) * (~o).a % MODULO); }modint &operator+=(const modint &o) noexcept { return *this = *this + o; }modint &operator-=(const modint &o) noexcept { return *this = *this - o; }modint &operator*=(const modint &o) noexcept { return *this = *this * o; }modint &operator/=(const modint &o) { return *this = *this / o; }modint operator~() const noexcept { return pow(MODULO - 2); }modint operator-() const noexcept { return a ? modint(MODULO - a) : *this; }modint operator++() noexcept { return a == MODULO - 1 ? a = 0 : ++a, *this; }modint operator--() noexcept { return a ? --a : a = MODULO - 1, *this; }bool operator==(const modint &o) const noexcept { return a == o.a; }bool operator!=(const modint &o) const noexcept { return a != o.a; }bool operator<(const modint &o) const noexcept { return a < o.a; }bool operator<=(const modint &o) const noexcept { return a <= o.a; }bool operator>(const modint &o) const noexcept { return a > o.a; }bool operator>=(const modint &o) const noexcept { return a >= o.a; }explicit operator bool() const noexcept { return a; }explicit operator uint32() const noexcept { return a; }modint pow(uint32 x) const noexcept { uint64 t = a, u = 1; while (x) { if (x & 1)u = u * t % MODULO; t = (t * t) % MODULO; x >>= 1; }	return modint(u); }
	uint32 get() const noexcept { return a; }
};
using mint = modint<MOD>;
const mint mintzero = mint(0); const mint mintone = mint(1);
mint modinv(mint a) { return mintone / mint(a); }

vector<mint> fact, inv_fact;

void init_fact(int n) {
	fact.resize(n);
	fact[0] = mintone;
	for (int i = 1; i < n; i++) {
		fact[i] = fact[i - 1] * mint(i);
	}
	inv_fact.resize(n);
	inv_fact[n - 1] = modinv(fact[n - 1]);
	for (int i = n - 2; i >= 0; i--) {
		inv_fact[i] = mint(i + 1) * inv_fact[i + 1];
	}
}
mint nCr(int n, int r) {
	if (n < r || n < 0 || r < 0) return mintzero;
	return fact[n] * inv_fact[r] * inv_fact[n - r];
}

mint nPr(int n, int r) {
	if (n < r || n < 0 || r < 0) return mintzero;
	return fact[n] * inv_fact[n - r];
}

mint nHr(int n, int r) {
	if (n < 0 || r < 0) return mintzero;
	if (n == 0 && r == 0) return mintone;
	return nCr(n + r - 1, r);
}

void solve_yukicoder_117() {
	int T;
	scanf("%d\n", &T);
	init_fact(2000006);
	while (T--) {
		char c;
		int n, k;
		scanf("%c(%d,%d)\n", &c, &n, &k);
		if (c == 'C') printf("%d\n", nCr(n, k).get());
		if (c == 'P') printf("%d\n", nPr(n, k).get());
		if (c == 'H') printf("%d\n", nHr(n, k).get());
	}
}

int main() {

	solve_yukicoder_117();
}
0