結果
問題 | No.302 サイコロで確率問題 (2) |
ユーザー | square1001 |
提出日時 | 2019-03-29 22:19:59 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,928 bytes |
コンパイル時間 | 1,121 ms |
コンパイル使用メモリ | 89,708 KB |
実行使用メモリ | 31,936 KB |
最終ジャッジ日時 | 2024-11-07 01:26:52 |
合計ジャッジ時間 | 4,416 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 9 ms
5,248 KB |
testcase_01 | AC | 34 ms
6,820 KB |
testcase_02 | AC | 79 ms
10,500 KB |
testcase_03 | AC | 9 ms
5,248 KB |
testcase_04 | AC | 34 ms
6,780 KB |
testcase_05 | AC | 70 ms
10,720 KB |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | AC | 10 ms
5,248 KB |
testcase_09 | WA | - |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | RE | - |
testcase_17 | AC | 66 ms
9,908 KB |
testcase_18 | RE | - |
testcase_19 | AC | 2 ms
5,248 KB |
ソースコード
#ifndef CLASS_POLYNOMIAL #define CLASS_POLYNOMIAL #include <vector> #include <complex> #include <cstdint> #include <algorithm> class polynomial { private: using type = double; const type epsilon = 1.0e-9; std::size_t sz; std::vector<type> a; inline bool equivalent(type ra, type rb) const { return (epsilon <= ra - rb && ra - rb <= epsilon); } void discrete_fourier_transform(std::vector<std::complex<type> >& v, bool rev) { std::size_t n = v.size(); const type pi = acos(type(-1)); for (std::size_t i = 0, j = 1; j < n - 1; ++j) { for (std::size_t k = n >> 1; k > (i ^= k); k >>= 1); if (i > j) std::swap(v[i], v[j]); } for (std::size_t b = 1; b < n; b <<= 1) { std::complex<type> wr = std::polar(type(1), (rev ? type(-1) : type(1)) * pi / b); for (std::size_t i = 0; i < n; i += 2 * b) { std::complex<type> w = type(1); for (std::size_t j = 0; j < b; ++j) { std::complex<type> v0 = v[i + j]; std::complex<type> v1 = w * v[i + j + b]; v[i + j] = v0 + v1; v[i + j + b] = v0 - v1; w *= wr; } } } if (!rev) return; for (std::size_t i = 0; i < n; i++) v[i] /= n; } public: explicit polynomial() : sz(1), a(std::vector<type>({ type() })) {}; explicit polynomial(std::size_t sz_) : sz(sz_), a(std::vector<type>(sz_, type())) {}; explicit polynomial(std::vector<type> a_) : sz(a_.size()), a(a_) {}; std::size_t size() { return sz; } std::size_t degree() { return sz - 1; } type operator[](std::size_t idx) const { return a[idx]; } type& operator[](std::size_t idx) { return a[idx]; } bool operator==(const polynomial& p) const { for (std::size_t i = 0; i < sz && i < p.sz; ++i) { if (!equivalent(i < sz ? a[i] : type(0), i < p.sz ? p.a[i] : type(0))) { return false; } } return true; } bool operator!=(const polynomial& p) const { return !(operator==(p)); } polynomial& operator+=(const polynomial& p) { sz = std::max(sz, p.sz); a.resize(sz); for (std::size_t i = 0; i < sz; ++i) a[i] += p.a[i]; return (*this); } polynomial& operator-=(const polynomial& p) { sz = std::max(sz, p.sz); a.resize(sz); for (std::size_t i = 0; i < sz; ++i) a[i] -= p.a[i]; return (*this); } polynomial& operator*=(const polynomial& p) { std::size_t n = 2; while (n < sz * 2 || n < p.sz * 2) n <<= 1; std::vector<std::complex<type> > v(n), pv(n); for (std::size_t i = 0; i < sz; ++i) v[i] = a[i]; for (std::size_t i = 0; i < p.sz; ++i) pv[i] = p.a[i]; discrete_fourier_transform(v, false); discrete_fourier_transform(pv, false); for (std::size_t i = 0; i < n; ++i) v[i] *= pv[i]; discrete_fourier_transform(v, true); sz += p.sz - 1; a.resize(sz, type(0)); for (std::size_t i = 0; i < sz; ++i) a[i] = v[i].real(); return (*this); } polynomial operator+() const { return polynomial(*this); } polynomial operator-() const { return polynomial() - polynomial(*this); } polynomial operator+(const polynomial& p) const { return polynomial(*this) += p; } polynomial operator-(const polynomial& p) const { return polynomial(*this) -= p; } polynomial operator*(const polynomial& p) const { return polynomial(*this) *= p; } }; #endif #include <cmath> #include <vector> #include <iostream> using namespace std; int main() { cin.tie(0); ios_base::sync_with_stdio(false); long long N, L, R; cin >> N >> L >> R; cout.precision(15); if (N > 100000) { double mean = 3.5 * N; double stdev = sqrt(3.5 * N); double probl = erf(((L - 0.5) - mean) / (sqrt(2.0) * stdev)) / 2; double probr = erf(((R + 0.5) - mean) / (sqrt(2.0) * stdev)) / 2; cout << probr - probl << endl; } else { polynomial b(7); for (int i = 1; i <= 6; ++i) b[i] = 1.0 / 6.0; polynomial ans(1); ans[0] = 1; while (N > 0) { if (N & 1) ans *= b; b *= b; N >>= 1; } double prob = 0.0; for (long long i = L; i <= R; ++i) { prob += ans[i]; } cout << prob << endl; } return 0; }