結果

問題 No.644 G L C C D M
ユーザー minamiminami
提出日時 2019-04-04 13:30:17
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 31 ms / 2,000 ms
コード長 3,799 bytes
コンパイル時間 1,878 ms
コンパイル使用メモリ 171,164 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-07 15:52:04
合計ジャッジ時間 2,804 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 1 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 3 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 4 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
testcase_20 AC 2 ms
5,376 KB
testcase_21 AC 2 ms
5,376 KB
testcase_22 AC 31 ms
5,376 KB
testcase_23 AC 15 ms
5,376 KB
testcase_24 AC 10 ms
5,376 KB
testcase_25 AC 4 ms
5,376 KB
testcase_26 AC 4 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include "bits/stdc++.h"
using namespace std;
#ifdef _DEBUG
#include "dump.hpp"
#else
#define dump(...)
#endif

//#define int long long
#define rep(i,a,b) for(int i=(a);i<(b);i++)
#define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--)
#define all(c) begin(c),end(c)
const int INF = sizeof(int) == sizeof(long long) ? 0x3f3f3f3f3f3f3f3fLL : 0x3f3f3f3f;
const int MOD = 1'000'000'007;
template<class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; }
template<class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return true; } return false; }

// オイラーのトーシェント関数(Euler's totient function)
// nと互いに素な数[1,n]の個数
int eulerTotient(int n) {
	int ret = n;
	for (int x = 2; x*x <= n; x++) {
		if (n%x)continue;
		ret -= ret / x;
		while (n%x == 0)
			n /= x;
	}
	if (n != 1)
		ret -= ret / n;
	return ret;
}

template<int MOD>
struct ModInt {
	static const int kMod = MOD;
	unsigned x;
	ModInt() :x(0) {}
	ModInt(signed x_) { x_ %= MOD; if (x_ < 0)x_ += MOD; x = x_; }
	ModInt(signed long long x_) { x_ %= MOD; if (x_ < 0)x_ += MOD; x = x_; }
	int get()const { return (int)x; }
	ModInt &operator+=(ModInt m) { if ((x += m.x) >= MOD)x -= MOD; return *this; }
	ModInt &operator-=(ModInt m) { if ((x += MOD - m.x) >= MOD)x -= MOD; return *this; }
	ModInt &operator*=(ModInt m) { x = (unsigned long long)x*m.x%MOD; return *this; }
	ModInt &operator/=(ModInt m) { return *this *= m.inverse(); }
	ModInt operator+(ModInt m)const { return ModInt(*this) += m; }
	ModInt operator-(ModInt m)const { return ModInt(*this) -= m; }
	ModInt operator*(ModInt m)const { return ModInt(*this) *= m; }
	ModInt operator/(ModInt m)const { return ModInt(*this) /= m; }
	ModInt operator-()const { return ModInt(MOD - x); }
	bool operator==(ModInt m)const { return x == m.x; }
	bool operator!=(ModInt m)const { return x != m.x; }
	ModInt inverse()const {
		signed a = x, b = MOD, u = 1, v = 0;
		while (b) {
			signed t = a / b;
			a -= t * b; swap(a, b);
			u -= t * v; swap(u, v);
		}
		if (u < 0)u += MOD;
		return ModInt(u);
	}
};
template<int MOD>
ostream &operator<<(ostream &os, const ModInt<MOD> &m) { return os << m.x; }
template<int MOD>
istream &operator>>(istream &is, ModInt<MOD> &m) { signed long long s; is >> s; m = ModInt<MOD>(s); return is; };

template<int MOD>
ModInt<MOD> pow(ModInt<MOD> a, unsigned long long k) {
	ModInt<MOD> r = 1;
	while (k) {
		if (k & 1)r *= a;
		a *= a;
		k >>= 1;
	}
	return r;
}

using mint = ModInt<MOD>;

// n < 10^7
// 前計算 O(n)
// 計算 O(1)
// Verified: https://yukicoder.me/submissions/330366
vector<mint> fact, factinv, inv;
void precompute(int n) {
	int m = fact.size();
	if (n < m)return;
	n = min(n, mint::kMod - 1); //  N >= kMod  =>  N! = 0 (mod kMod)
	fact.resize(n + 1);
	factinv.resize(n + 1);
	inv.resize(n + 1);
	if (m == 0) {
		fact[0] = 1;
		m = 1;
	}
	for (int i = m; i <= n; i++)
		fact[i] = fact[i - 1] * i;
	factinv[n] = fact[n].inverse();
	for (int i = n; i >= m; i--)
		factinv[i - 1] = factinv[i] * i; // ((i-1)!)^(-1) = (i!)^(-1) * i
	for (int i = m; i <= n; i++)
		inv[i] = factinv[i] * fact[i - 1];
}

mint C(int n, int k) {
	// Lucas's theorem
	if (n >= mint::kMod)
		return C(n % mint::kMod, k % mint::kMod) * C(n / mint::kMod, k / mint::kMod);
	precompute(n);
	return k > n ? 0 : fact[n] * factinv[n - k] * factinv[k];
}

mint P(int n, int k) {
	precompute(n);
	return k > n ? 0 : fact[n] * factinv[n - k];
}

mint H(int n, int k) {
	if (n == 0 && k == 0)return 1; // H(0,0) = C(-1,0) = 1
	return C(n + k - 1, k);
}

signed main() {
	cin.tie(0);
	ios::sync_with_stdio(false);
	int N, M; cin >> N >> M;
	mint ans = 0;
	precompute(N);
	for (int i = 2; i * M <= N; i++) {
		ans += fact[N - 2] * 2 * eulerTotient(i);
		dump(i, ans);
	}
	cout << ans << endl;
	return 0;
}
0