結果
| 問題 |
No.644 G L C C D M
|
| コンテスト | |
| ユーザー |
minami
|
| 提出日時 | 2019-04-04 13:30:17 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 36 ms / 2,000 ms |
| コード長 | 3,799 bytes |
| コンパイル時間 | 2,463 ms |
| コンパイル使用メモリ | 171,040 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-12-25 22:22:25 |
| 合計ジャッジ時間 | 3,382 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 27 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
#ifdef _DEBUG
#include "dump.hpp"
#else
#define dump(...)
#endif
//#define int long long
#define rep(i,a,b) for(int i=(a);i<(b);i++)
#define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--)
#define all(c) begin(c),end(c)
const int INF = sizeof(int) == sizeof(long long) ? 0x3f3f3f3f3f3f3f3fLL : 0x3f3f3f3f;
const int MOD = 1'000'000'007;
template<class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; }
template<class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return true; } return false; }
// オイラーのトーシェント関数(Euler's totient function)
// nと互いに素な数[1,n]の個数
int eulerTotient(int n) {
int ret = n;
for (int x = 2; x*x <= n; x++) {
if (n%x)continue;
ret -= ret / x;
while (n%x == 0)
n /= x;
}
if (n != 1)
ret -= ret / n;
return ret;
}
template<int MOD>
struct ModInt {
static const int kMod = MOD;
unsigned x;
ModInt() :x(0) {}
ModInt(signed x_) { x_ %= MOD; if (x_ < 0)x_ += MOD; x = x_; }
ModInt(signed long long x_) { x_ %= MOD; if (x_ < 0)x_ += MOD; x = x_; }
int get()const { return (int)x; }
ModInt &operator+=(ModInt m) { if ((x += m.x) >= MOD)x -= MOD; return *this; }
ModInt &operator-=(ModInt m) { if ((x += MOD - m.x) >= MOD)x -= MOD; return *this; }
ModInt &operator*=(ModInt m) { x = (unsigned long long)x*m.x%MOD; return *this; }
ModInt &operator/=(ModInt m) { return *this *= m.inverse(); }
ModInt operator+(ModInt m)const { return ModInt(*this) += m; }
ModInt operator-(ModInt m)const { return ModInt(*this) -= m; }
ModInt operator*(ModInt m)const { return ModInt(*this) *= m; }
ModInt operator/(ModInt m)const { return ModInt(*this) /= m; }
ModInt operator-()const { return ModInt(MOD - x); }
bool operator==(ModInt m)const { return x == m.x; }
bool operator!=(ModInt m)const { return x != m.x; }
ModInt inverse()const {
signed a = x, b = MOD, u = 1, v = 0;
while (b) {
signed t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
if (u < 0)u += MOD;
return ModInt(u);
}
};
template<int MOD>
ostream &operator<<(ostream &os, const ModInt<MOD> &m) { return os << m.x; }
template<int MOD>
istream &operator>>(istream &is, ModInt<MOD> &m) { signed long long s; is >> s; m = ModInt<MOD>(s); return is; };
template<int MOD>
ModInt<MOD> pow(ModInt<MOD> a, unsigned long long k) {
ModInt<MOD> r = 1;
while (k) {
if (k & 1)r *= a;
a *= a;
k >>= 1;
}
return r;
}
using mint = ModInt<MOD>;
// n < 10^7
// 前計算 O(n)
// 計算 O(1)
// Verified: https://yukicoder.me/submissions/330366
vector<mint> fact, factinv, inv;
void precompute(int n) {
int m = fact.size();
if (n < m)return;
n = min(n, mint::kMod - 1); // N >= kMod => N! = 0 (mod kMod)
fact.resize(n + 1);
factinv.resize(n + 1);
inv.resize(n + 1);
if (m == 0) {
fact[0] = 1;
m = 1;
}
for (int i = m; i <= n; i++)
fact[i] = fact[i - 1] * i;
factinv[n] = fact[n].inverse();
for (int i = n; i >= m; i--)
factinv[i - 1] = factinv[i] * i; // ((i-1)!)^(-1) = (i!)^(-1) * i
for (int i = m; i <= n; i++)
inv[i] = factinv[i] * fact[i - 1];
}
mint C(int n, int k) {
// Lucas's theorem
if (n >= mint::kMod)
return C(n % mint::kMod, k % mint::kMod) * C(n / mint::kMod, k / mint::kMod);
precompute(n);
return k > n ? 0 : fact[n] * factinv[n - k] * factinv[k];
}
mint P(int n, int k) {
precompute(n);
return k > n ? 0 : fact[n] * factinv[n - k];
}
mint H(int n, int k) {
if (n == 0 && k == 0)return 1; // H(0,0) = C(-1,0) = 1
return C(n + k - 1, k);
}
signed main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N, M; cin >> N >> M;
mint ans = 0;
precompute(N);
for (int i = 2; i * M <= N; i++) {
ans += fact[N - 2] * 2 * eulerTotient(i);
dump(i, ans);
}
cout << ans << endl;
return 0;
}
minami