結果
| 問題 |
No.665 Bernoulli Bernoulli
|
| コンテスト | |
| ユーザー |
minami
|
| 提出日時 | 2019-04-05 00:18:59 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 512 ms / 2,000 ms |
| コード長 | 4,040 bytes |
| コンパイル時間 | 1,721 ms |
| コンパイル使用メモリ | 173,496 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-12-29 05:14:56 |
| 合計ジャッジ時間 | 10,539 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 15 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
#ifdef _DEBUG
#include "dump.hpp"
#else
#define dump(...)
#endif
//#define int long long
#define rep(i,a,b) for(int i=(a);i<(b);i++)
#define rrep(i,a,b) for(int i=(b)-1;i>=(a);i--)
#define all(c) begin(c),end(c)
const int INF = sizeof(int) == sizeof(long long) ? 0x3f3f3f3f3f3f3f3fLL : 0x3f3f3f3f;
const int MOD = 1'000'000'007;
template<class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; }
template<class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return true; } return false; }
template<int MOD>
struct ModInt {
static const int kMod = MOD;
unsigned x;
ModInt() :x(0) {}
ModInt(signed x_) { x_ %= MOD; if (x_ < 0)x_ += MOD; x = x_; }
ModInt(signed long long x_) { x_ %= MOD; if (x_ < 0)x_ += MOD; x = x_; }
int get()const { return (int)x; }
ModInt &operator+=(ModInt m) { if ((x += m.x) >= MOD)x -= MOD; return *this; }
ModInt &operator-=(ModInt m) { if ((x += MOD - m.x) >= MOD)x -= MOD; return *this; }
ModInt &operator*=(ModInt m) { x = (unsigned long long)x*m.x%MOD; return *this; }
ModInt &operator/=(ModInt m) { return *this *= m.inverse(); }
ModInt operator+(ModInt m)const { return ModInt(*this) += m; }
ModInt operator-(ModInt m)const { return ModInt(*this) -= m; }
ModInt operator*(ModInt m)const { return ModInt(*this) *= m; }
ModInt operator/(ModInt m)const { return ModInt(*this) /= m; }
ModInt operator-()const { return ModInt(MOD - (signed)x); }
bool operator==(ModInt m)const { return x == m.x; }
bool operator!=(ModInt m)const { return x != m.x; }
ModInt inverse()const {
signed a = x, b = MOD, u = 1, v = 0;
while (b) {
signed t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
if (u < 0)u += MOD;
return ModInt(u);
}
};
template<int MOD>
ostream &operator<<(ostream &os, const ModInt<MOD> &m) { return os << m.x; }
template<int MOD>
istream &operator>>(istream &is, ModInt<MOD> &m) { signed long long s; is >> s; m = ModInt<MOD>(s); return is; };
template<int MOD>
ModInt<MOD> pow(ModInt<MOD> a, unsigned long long k) {
ModInt<MOD> r = 1;
while (k) {
if (k & 1)r *= a;
a *= a;
k >>= 1;
}
return r;
}
using mint = ModInt<MOD>;
// n < 10^7
// 前計算 O(n)
// 計算 O(1)
// Verified: https://yukicoder.me/submissions/330366
vector<mint> fact, factinv, inv;
void precompute(int n) {
int m = fact.size();
if (n < m)return;
n = min(n, mint::kMod - 1); // N >= kMod => N! = 0 (mod kMod)
fact.resize(n + 1);
factinv.resize(n + 1);
inv.resize(n + 1);
if (m == 0) {
fact[0] = 1;
m = 1;
}
for (int i = m; i <= n; i++)
fact[i] = fact[i - 1] * i;
factinv[n] = fact[n].inverse();
for (int i = n; i >= m; i--)
factinv[i - 1] = factinv[i] * i; // ((i-1)!)^(-1) = (i!)^(-1) * i
for (int i = m; i <= n; i++)
inv[i] = factinv[i] * fact[i - 1];
}
mint C(int n, int k) {
if (k < 0 || n < k)return 0;
// Lucas's theorem
if (n >= mint::kMod)
return C(n % mint::kMod, k % mint::kMod) * C(n / mint::kMod, k / mint::kMod);
precompute(n);
return k > n ? 0 : fact[n] * factinv[n - k] * factinv[k];
}
mint P(int n, int k) {
if (k < 0 || n < k)return 0;
precompute(n);
return k > n ? 0 : fact[n] * factinv[n - k];
}
mint H(int n, int k) {
if (n == 0 && k == 0)return 1; // H(0,0) = 1 != C(-1,0) = 0
return C(n + k - 1, k);
}
// ベルヌーイ数 B^-
// O(n^2)
vector<mint> bernoulliNumbers(int n) {
vector<mint> B(n + 1);
B[0] = 1;
precompute(n + 1);
for (int i = 1; i <= n; i++) {
for (int k = 0; k <= i - 1; k++)
B[i] += C(i + 1, k) * B[k];
B[i] *= -inv[i + 1];
}
return B;
}
// 冪乗和
// 1^k + 2^k + ... + n^k
// O(k^2)
mint sumOfPowers(long long n, int k) {
vector<mint> B = bernoulliNumbers(k);
mint sum = 0;
mint p = 1;
mint s = k & 1 ? -1 : 1;
for (int i = 1; i < k + 2; i++) {
p *= n;
sum += s * C(k + 1, i) * p * B[k + 1 - i];
s *= -1;
}
sum /= k + 1;
return sum;
}
signed main() {
cin.tie(0);
ios::sync_with_stdio(false);
long long n, k; cin >> n >> k;
cout << sumOfPowers(n, k) << endl;
return 0;
}
minami